
1

7.1 First-order initial-value problems
A first-order initial-value problem (IVP) is a first-order ordinary differential equation with a specified value:

 0

d
,

d
y t f t y t

t

y a y

That is, this says that the function y(t) satisfies the ode while simultaneously having a value of y0 at time a.

For example, you have already seen that

 0

d

d

0

y t y t
t

y y

has a solution 0

ty t y e , for the function satisfies the ODE:

 0 0 0 0

d d d

d d d

t t t ty t y e y e y e y e y t
t t t

and

 0

0 0 00 1y y e y y .

In your calculus course, you will see that you can always find explicit solutions to such initial-value problems under

a few very specific set of conditions. While it is fortunate that many simplified models of reality can in some cases

be described by such simple differential equations; in general, however, we cannot find an explicit solution; for

example, a variation of the Van der Pol equation is

2

0

d
1

d

0

t
y t t

t y t

y y

This function does not have an explicit solution that we can write down, so if we want to find such a solution, we

must approximate it.

2

Interpreting IVPs

If we examine the ODE
d

,
d

y t f t y t
t

 we see that at every point (t, y), we can find a slope ,f t y . Thus, if

the solution passes through a point (t, y), it must do so with the slope given by the ODE. One thing that we can do is

to evaluate the slope at a set of points.

For example, if we consider the ode

 2d
0.5 1

d

t
y t t

t y t
 and plot a line equal to the slope

 2, 0.5 1
t

f t y t
y

 at a number of different points, we see

3

For example, if we consider those solutions the initial value of which at t = 0 is –2.5, –2, –1.5, –1, –0.5, 0.5, 1, 1.5

and 2, we see a few oddities:

1. most of the solutions appear to terminate when they reach a value of y(t) = 0, for some t, but

2. if the initial value is small enough, the solution appears to drop to –∞.

Note that at any point where a solution is close to an arrow, the slope of that solution matches very close the slope of

the arrow.

Euler’s method
How can we approximate a solution? We have an initial value, let us say y(a) = y0. Let us now consider the Tayler

series at this point:

 1 2 21

2
y a h y a y a h y h .

where is some value a < < a + h.

From the differential equation, we have two of these:

0

1

0,

y a y

y a f a y

Thus, we have

4

 2 2

0 0

1
,

2
y a h y f a y h y h .

Therefore,

 0 0,y a h y h f a y .

Thus, let us designate

 1 0 0,y y h f a y

and if we designate
kt a kh , so y0 is the value at t0 = a, and an approximation to the solution at

1t a h is

 1 0 0 0,y y h f t y .

Now, if 1 1,t y is approximately on the solution to the initial value problem, then we can repeat this procedure:

 1 1 1 1,y t h y h f t y .

5

For example, if we consider the following time-independent non-linear first-order ode,

d
1

d

0 0.1

y t y t y t
t

y

it is possible to determine that the solution to this IVP is the function
1

1 9 t
y t

e

. You can confirm this by

observing that
0

1 1 1
0 0.1

1 9 1 101 9
y

e

 and

 2

d d 1 9 1 1 9 1 1 1
1 1

d d 1 9 1 9 1 9 1 9 1 91 9

t t

t t t t t
t

e e
y t y t y t

t t e e e e ee

.

Now, let us approximate y(0.2), y(0.4), …, y(3.0) using our technique. First, define tk = 0 + k 0.2, and thus yk will be

our approximation of y(tk). In this case, the function f is defined as f(t, y) = y(1 – y), so

 y1 = y0 + 0.2 f(t0, y0) = 0.1 + 0.2 (0.1(1 – 0.1)) = 0.118

 y2 = y1 + 0.2 f(t1, y1) = 0.118 + 0.2 (0.118 (1 – 0.118)) = 0.1388152

 y3 = y2 + 0.2 f(t2, y2) = 0.1388152 + 0.2 (0.1388152 (1 – 0.1388152)) = 0.162724308049792

 y4 = y3 + 0.2 f(t3, y3) = 0.1899733295736937

 y5 = y4 + 0.2 f(t4, y4) = 0.2207500222985694

 y6 = y5 + 0.2 f(t5, y5) = 0.2551539122893195

 y7 = y6 + 0.2 f(t6, y6) = 0.2931639909558742

 y8 = y7 + 0.2 f(t7, y7) = 0.3346077640284139

 y9 = y8 + 0.2 f(t8, y8) = 0.3791368456844777

y10 = y9 + 0.2 f(t9, y9) = 0.4262152652702582

y11 = y10 + 0.2 f(t10, y10) = 0.4751264278544305

y12 = y11 + 0.2 f(t11, y11) = 0.5250026889361743

y13 = y12 + 0.2 f(t12, y12) = 0.5748776620453665

y14 = y13 + 0.2 f(t13, y13) = 0.6237563291906905

y15 = y14 + 0.2 f(t14, y14) = 0.6706932033877396

To see how good our approximation is,
3

1
3 0.6905678577030156

1 9
y

e

, so we note the error is 0.01987.

6

Note that the error of one approximation is 2 21

2
y h . Thus, reducing the step size should reduce the error by a

factor of four:

 y0 = 0.1

 y1 = 0.109

 y2 = 0.1187119

0.129173838479839

0.140422634273061346

0.152493046078748886

0.165416937776386232

0.179222355223693172

0.193932525484869723

0.209564795589262731

0.226129534793152057

0.243629031621890526

0.262056424279177565

0.281394709756496489

0.301615882464251848

0.322680256655208094

0.344536027517221807

0.367119122843209206

0.390353390091813394

0.414151152185377590

0.438414149718267770

0.463034868022775376

0.487898225924566013

0.512883580630988728

0.537866981966001209

0.562723591133679863

0.587330166245209359

0.611567510451567769

0.635322779512731701

 y29 = 0.658491554047226561

 y30 = 0.680979596776796067

We observe that the error of y30 to y(3) is 0.009588, so the error only drops by a factor of two, so actually it does: the

previous y1 = 0.118 as an approximation to y(0.2) = 0.1194946317113934 has an error to the correct answer of

0.001495, while the current y1 = 0.109 as an approximation to y(0.1) = 0.1194946317113934 has an error of

0.0003669, or almost exactly one quarter the previous error. The issue is that the error is cumulative: when we are

approximating y2, we are using already the approximation of y1, and so on and so forth. Consequently, the error

accumulates:

2

2 22

1 1

1 1

1

2 2

n n

k k

k k

h
y h y

 .

.

7

You may already recognize the right-hand side, as we may now multiply by 1
n

n
 to get

2

2 22

1 1

1 1

1 1

2 2

n n

k k

k k

nh
y h y

n

and the term in parentheses is the average of the second derivative sampled on the interval 0 < t < nh, and we may

also write nh = tn – t0, to get

 2

0
2

n

h
t t y ;

where
0 nt t . Incidentally, we may note that the second derivative on the interval [0, 3] spans the range

[–0.09622, 0.08144] and thus the possible range of the error is [–0.02443, 0.02887] when h = 0.2, and

[–0.01443, 0.01222], and both our errors, 0.001495 and 0.0003669 fall into these two intervals, respectively.

Integration, in disguise
When we are attempting to solve an IVP, we are actually attempting to integrate

0

0

0

d
d

d

t h

t

y y t t
t

 .

Thus, one absolutely horrible approximation of an integral is to evaluate the integrand at one end-point and multiply

by the width of the interval:

0

0

0 0 0 0 0 0

d d
d ,

d d

t h

t

y y t t y h y t y hf t y
t t

 .

We didn’t even attempt this approximation of an integral in the previous chapters—we jumped immediately to the

trapezoidal rule. If we were to attempt to approximate such an integral with such a poor approximation, we would

have

1

1

2

1

d d d

d
2

b b b

a a a

b

a

f x f a f x a

f x x f a x f x a x

b a
f x x f a b a f

Consequently, this is a horrible approximation of the integral, but it still works.

8

Implementation of Euler’s method
Here is a C++ implementation of Euler’s method. It returns a tuple of three vectors that contain

1. the time values tk = a + kh,

2. the approximations yk, and

3. the derivatives at the points (tk, yk).

As the user is creating the approximation, it is assumed that the first and third pieces of information are therefore

also necessary.

#include <vector>
#include <tuple>
#include <cassert>
#include <iostream>
#include <cmath>

std::tuple< std::vector<double>, std::vector<double>, std::vector<double> >
 euler(double f(double, double),
 double t0, double y0, double tf,
 size_t n) {
 assert(n > 0);

 double h{(tf - t0)/n};

 std::vector<double> t(n + 1);
 std::vector<double> y(n + 1);
 std::vector<double> dy(n + 1);

 y[0] = y0;

 for (size_t k{0}; k < n; ++k) {
 t[k] = t0 + k*h;

 double s0{f(t[k], y[k])};
 dy[k] = s0;

 y[k + 1] = y[k] + h*s0;
 }

 t[n] = tf;
 dy[n] = f(tf, y[n]);

 return std::make_tuple(t, y, dy);
}

9

As an example of how this code works:

#include <iostream>

// Approximate the solution to the differential equation D(y)(t) = -y(t)*t
double f(double t, double y) {
 return -y*t;
}

int main() {
 std::size_t const N{20};
 double t0{0.3};
 double y0{2.7};

 auto result = euler(f, t0, y0, 0.9, N);

 // Print the t-values
 for (std::size_t k{0}; k < N; ++k) {
 std::cout << std::get<0>(result)[k] << ", ";
 }

 std::cout << std::get<0>(result)[N] << std::endl;

 // Print the approximations y[k] ~ y(t[k])
 for (std::size_t k{0}; k < N; ++k) {
 std::cout << std::get<1>(result)[k] << ", ";
 }

 std::cout << std::get<1>(result)[N] << std::endl;

 // Print the actual solution y(t[k])
 for (std::size_t k{0}; k < N; ++k) {
 double t{std::get<0>(result)[k]};
 std::cout << y0*std::exp(0.5*t0*t0 - 0.5*t*t) << ", ";
 }

 {
 double t{std::get<0>(result)[N]};
 std::cout << y0*std::exp(0.5*t0*t0 - 0.5*t*t) << std::endl;
 }

 return 0;
}

10

Example of Euler’s method
Suppose we want to approximate the solution to the initial-value problem

 1
1 0.5

(0) 1.2

y t t y t

y

where we want to approximate y(2) with h = 1.0, 0.5 and 0.25. Here,

 , 1 0.5f t y t y .

First, we note that this does have a solution:

 0.5 20.50.05 5 2 e erf 0.5 2 erf 0.5 2 1 24 e
t t

y t t

This can be implemented as the C++ function

double y(double t) {
 double const SQRT_PI{std::sqrt(std::acos(-1.0))};
 double const ROOT_2_5{std::sqrt(2.0)*0.5};

 return 0.05*(10.0*ROOT_2_5*SQRT_PI*std::exp(0.5)*(
 std::erf(ROOT_2_5) + std::erf(ROOT_2_5*(t - 1))
) + 24.0)*exp(0.5*t*(t - 2.0));
}

This solution evaluated at this point is y(2.0) = 2.610686134642448.

Applying Euler’s method with h = 1, we have

1 0 0 0,

1.2 1 0,1.2

1.2 1 0 1 1.2 0.5

1.2 0.7

0.5

y y h f t y

f

2 1 1 1,

0.5 1 1.0,0.5

0.5 1 1.0 1 0.5 0.5

0.5 0.5

1.0

y y h f t y

f

Thus, we are not off to a very good start, with an error approximately equal to 1.611.

11

Applying Euler’s method with h = 0.5, we have

1 0 0 0,

1.2 0.5 0,1.2

1.2 0.5 0 1 1.2 0.5

1.2 0.35

0.85

y y h f t y

f

2 1 1 1,

0.85 0.5 0.5,0.85

0.85 0.5 0.5 1 0.85 0.5

0.85 0.0375

0.8875

y y h f t y

f

3 2 2 2,

0.8875 0.5 1.0,0.8875

0.8875 0.5 1.0 1 0.8875 0.5

0.8875 0.25

1.1375

y y h f t y

f

4 3 3 3,

1.1375 0.5 1.5,1.1375

1.1375 0.5 1.5 1 1.1375 0.5

1.1375 0.534375

1.671875

y y h f t y

f

The error has now been reduced to 0.9388.

12

t h = 0.5 h = 0.25 h = 0.125 h = 0.0625

Calls 4 8 16 32

0.0 1.2 1.2 1.2 1.2

0.0625 1.15625

0.125 1.1125 1.1197509765625

0.875 1.089764595031738

0.25 1.025 1.0533203125 1.065674986690283

0.3125 1.046971471689176

0.3750 1.017071533203125 1.033234416265032

0.4375 1.024123696879679

0.5 0.85 0.9578125 1.000112819671631 1.019369348161252

0.5625 1.018764056031213

0.625 1.000105768442154 1.022157226374110

0.6875 1.029450416380967

0.75 0.9630859374999999 1.015725810546428 1.040593962936026

0.8125 1.055584682265150

0.875 1.046484378966852 1.074464549269856

0.9375 1.097320294978685

1.0 0.8875 1.02789306640625 1.092633060545495 1.124283887576425

1.0625 1.155533887576425

1.125 1.155133060545495 1.191297691824770

1.875 1.231854705042151

1.25 1.15289306640625 1.235682014616518 1.277540502366864

1.3125 1.328752072716346

1.3750 1.336797077573284 1.385954261636587

1.4375 1.449687564643694

1.5 1.1375 1.349948883056641 1.461959440584532 1.520577458989421

1.5625 1.599345504582840

1.625 1.615831905621065 1.686822494978330

1.6875 1.783963998688421

1.75 1.643692493438721 1.804568773247711 1.891868701757065

1.8125 2.011800047151927

1.875 2.036247095739684 2.145211768296361

1.9375 2.293778036875068

2.0 1.671875 2.076884835958481 2.321461621836212 2.459429093723216

Recall that the exact solution is y(2.0) = 2.610686134642448, so the error when h = 0.125 is 0.2892, while the error

when h = 0.0625 is 0.1513, which is approximately half the previous error.

13

n h
Function

calls

Approximation

of y(2.0)

Absolute

error

 1 2.0 1 –0.2 2.811

 2 1.0 2 1.0 1.611

 4 0. 5 4 1.671875 0.9388

 8 0. 25 8 2.076884835958481 0.5338

 16 0.125 16 2.321461621836212 0.2892

 32 0.0625 32 2.459429093723216 0.1513

 64 0.03125 64 2.533236823913693 0.07745

 128 0.015625 128 2.571484266405220 0.03920

 256 0.0078125 256 2.590963000669263 0.01972

 512 0.00390625 512 2.600793646021044 0.009892

1024 0.001953125 1024 2.605732112846550 0.004954

You will see that each time you double the number of steps, the error drops by approximately one half.

14

Estimating intermediate points
Suppose we have estimated values of the solution to an initial-value problem at the points t0, …, tn where tn = tf.

Suppose now we want to estimate the value of the solution at a point between two of these approximations:

1k kt t t .

In this case, we could do a linear approximation, so for example, if we were to interpolate with a linear polynomial,

by calculating

 1

1 1

k k

k k

y y
y t t

h

 ,

so for example, if we were approximating a point between t4 and t5 in the graphic below, we would be returning the

point shown here:

This, however, seems unsatisfying, as it seems the solution is clearly concave up at this point, so you would expect

the solution to be somewhat lower than the value that appears on the interpolating line. Instead, we could find the

interpolating cubic that passes through four points:

Finding the interpolating polynomial, however, is expensive, and there is actually more information available here

than just the points: we have, after all, the fact that the solution is that of a differential equation. Thus, ideally, the

interpolating polynomial should match both

1 1

1

1 1 1

1

,

,

k k

k k

k k k

k k k

p t y

p t y

p t f t y

p t f t y

Now, if that polynomial is of the form 3 2p t at bt ct d , then this requires us to solve the following system

of linear equations:

15

3 2
11 1 1

3 2

2
1 11 1

2

1

1

1

,3 2 1 0

,3 2 1 0

kk k k

kk k k

k kk k

k kk k

yat t t

ybt t t

f t yct t

f t ydt t

We could perform Gaussian elimination on this, but this leads to serious issues, as we must solve this system of

linear equations for every new point. Instead, let us find the value at y(tk – 1
 + (tk – tk – 1)) let us make the observation

that we can find an interpolating polynomial 3 2p t a b c d that passes through the points (0, yk – 1) and

(1, yk) with slopes sk – 1 and sk:

1

1

0 0 0 1

1 1 1 1

0 0 1 0

3 2 1 0

k

k

k

k

ya

yb

sc

sd

Performing Gaussian elimination, we have:

1

1 1

1

1

1

1

1

1 1

0 0 0 1 1 1 1 1

1 1 1 1 3 2 1 0
~

0 0 1 0 0 0 1 0

3 2 1 0 0 0 0 1

1 1 1 1

0 1 2 3 3
~

0 0 1 0

0 0 0 1

1 1 1 1

0 1 2 3 3
~

0 0 1 0

0 0 0 1

1 0 0 0 2 2

0 1 0
~

k k

k k

k k

k k

k

k k

k

k

k

k k

k

k

k k k k

y y

y s

s s

s y

y

s y

s

y

y

y s

s

y

y y s s

1 1

1

1

0 3 3 2

0 0 1 0

0 0 0 1

k k k k

k

k

y y s s

s

y

Now, the slopes assume that the width between the points is 1 – 0 = 1; however, the points tk – 1 and tk may be closer

or further apart. Therefore, we must adjust the slopes to the new width; specifically, we must multiply each of the

slopes by tk = tk – tk – 1. Thus, – 11 1 1,– kkk kks f tt yt and – 1– ,k kk k ks f tt t y . Therefore, the

interpolating polynomial is

 3 2

1 1 1 1 1 12 2 3 3 2k k k k k k k k k ky y s s y y s s s y ,

and you will note that evaluated at = 0, this gives yk – 1 while evaluated at = 1, this gives yk.

16

Example of estimating intermediate points
Let us take a real function for which we have the exact values and derivatives. Specifically, let us estimate the

values of sin(x) on the interval [0.3, 0.4] using the techniques above. yk – 1 = sin(0.3) while yk = sin(0.4). Similarly,

 1 0.1cos 0.3ks and 0.1cos 0.4ks . Thus, the interpolating polynomial in is to 10 decimal digits of

precision,

 3 20.0001565229818 0.001478990283 0.09553364891 0.2955202067p

If we plot sin 0.3 0.1p on the interval [0, 1], we get that we have a very good approximation:

Note that the absolute error does not exceed 10–7
. If you were to find the interpolating polynomial that passes

through the four points (0.2, sin(0.2)), (0.3, sin(0.3)), (0.4, sin(0.4)), (0.5, sin(0.5)) and plotted the error between this

and the correct values of the function on [0.3, 0.4], we get a more significant error:

The error is larger by almost an order of magnitude. Thus, finding an interpolating polynomial that matches the

values and derivatives of a function at two points is more effective at approximating an intermediate value than

finding an interpolating polynomial that matches the function at four points. The problem is that seldom do we know

the exact value of the derivatives, but for an IVP, the derivative is given as part of the problem.

17

Implementation of estimating intermediate points
Thus, we could implement the following function:

double ivp_interp(double t, double t0, double t1,
 double y0, double y1,
 double dy0, double dy1) {
 double delta_t{t1 - t0};
 double alpha{(t - t0)/delta_t};
 double delta_y{y1 - y0};
 double sum_dy{(dy0 + dy1)*delta_t};
 return (((-2*delta_y + sum_dy)*alpha - delta_t*dy0 - sum_dy + 3*delta_y)*alpha
 + dy0*delta_t)*alpha + y0;
}

However, more reasonable may be a function that takes as an argument the tuple returned by one of our

interpolating functions and then finds the appropriate interval on which to interpolate:

#include <cassert>
#include <vector>
#include <tuple>

double ivp_interp(double t, std::tuple< std::vector<double>,
 std::vector<double>,
 std::vector<double> > const &approx) {
 double t0{*std::get<0>(approx).begin()};
 double tf{*std::get<0>(approx).rbegin()};
 std::size_t n{std::get<0>(approx).size()};

 assert(t >= t0 && t <= tf);

 std::size_t k{
 static_cast<std::size_t>(std::floor((t - t0)/(tf - t0)*(n - 1)))};

 if (k == (n - 1)) {
 return *std::get<1>(approx).rbegin();
 } else {
 double t0{std::get<0>(approx)[k]};
 double t1{std::get<0>(approx)[k + 1]};
 double delta_t{t1 - t0};

 double y0{std::get<1>(approx)[k]};
 double y1{std::get<1>(approx)[k + 1]};
 double dy0{delta_t*std::get<2>(approx)[k]};
 double dy1{delta_t*std::get<2>(approx)[k + 1]};

 double offset{(t - t0)/delta_t};
 double delta_y{y1 - y0};
 double sum_dy{dy0 + dy1};

 return (
 ((-2*delta_y + sum_dy)*offset - dy0 - sum_dy + 3*delta_y)*offset + dy0
)*offset + y0;
 }
}

18

Heun’s method
To use the trapezoidal rule, we must be able to calculate

2

f a f b
h

or in this case,

 0 0

d d

d d

2

y t y t h
t th

.

The problem here is that if we knew 0 0 0

d
,

d
y t h f t h y t h

t
 , we wouldn’t have to approximate it!

However, we do have an approximation: recall that 0 0 0,y hf t y is an approximation of 0y t h , so could we

not use 1 1,f t y as an approximation to 0

d

d
y t h

t
 ? In that case, we now have Heun’s method:

1. let 0 0 0,s f t y ,

2. let 1 1 0 0,s f t y hs ,

3. let 0 1

1 0
2

s s
y y h

 .

19

Proof that Heun’s method is O(h3)
For Euler’s method, the proof that it is O(h2) is simple enough:

1 2 2

0 0 0 0

2 2

0 0 0 0

1

2

1
,

2

y t h y t y t h y h

y f t y h y h

For Heun’s method, that it is a significantly better approximation requires more delicate care:

1 2 32 3

0 0 0 0 0

2 32 3

0 0 0 0 0

1 1

2 6

1 1
,

2 6

y t h y t y t h y t h y h

y f t y h y t h y h

Let us label 0 0 0,s f t y as the initial slope, so we now have

 2 32 3

0 0 0 0 0

1 1

2 6
y t h y s h y t h y h

Next, let us use the forward divided-difference approximation of the second derivative:

1 1

2 30 0

0 1

1

2

y t h y t
y t y h

h

 .

Recall that
 1

0 0 0 0,s y t f t y , so we have that

1

2 30 0

0 1

1

2

y t h s
y t y h

h

We can substitute this into the previous equation to get

1

3 30 0 2 3

0 0 0 1 0

1 1 1

2 2 6

y t h s
y t h y s h y h h y h

h

Expanding this and collecting on powers of h, we have

 1 3 3 3

0 0 0 0 0 1 0

1 1 1 1

2 2 4 6
y t h y s h s h y t h h y y h

.

Observing that 0 0 0

1 1

2 2
s h s h s h and by continuity, we can simplify the error term to

 1 3 3

0 0 0 0

1 1 1

2 2 12
y t h y s h y t h h y h . [1]

20

We must now examine the term
 1

0y t h . From our IVP, we have that this equals

 1

0 0 0,y t h t h t hf y .

Now this becomes more subtle: for a function of two variables, we have that

2

2

2

1
, , , ,

2
g x y h g x y g x y h h g x h

y y

.

In this case, we will be substituting 1 2 2

0 0 0 2

1

2
y t h y y t h y h , so instead of calculating

2

2

2

1
, , , ,

2
f x y h f x y f x y h h f x h

y y

,

we will instead be calculating

1

0 0 0

1 2 2

0 0 0 2

To remain here
To be expanded

1 2 2

0 0 0 0 3 2

To remain here
To be expanded

,

1
,

2

1
, ,

2

f

f

f

y t h t h y t h

t h y y t h y h

t h y y t h t h y y hf
y

Now, recall that
 1

0 0y t s , so we now have that we can write this as

 1 2 2

0 0 0 0 0 3 2

1
, ,

2
y t h t h y s h t hf f y y h

y

.

Substituting this back into Equation [1], we have

2 32 3

0 0 0 0 0 0 0 3 2

2 3 3

0 0 0 0 0 0 3 2

1 1 1 1
, ,

2 2 2 12

1 1 1
, ,

2 4 12

y t h y s h t h y s h t h y y h h yf f h
y

y s t h y s h h t h y y y h
y

f f

If we allow 1 0 0 0,s t h y sf h , we may thus write this as

2 32 3

0 0 0 0 0 0 0 3 2

2 3 3

0 0 1 0 3 2

1 1 1 1
, ,

2 2 4 12

1 1 1
,

2 4 12

y t h y s h t h y s h t h y y h h y h
y

y s s h t h y y

f

y
f y

f

h

21

which is the formula for Heun’s method together with the O(h3) error.

To demonstrate that this is indeed, true, what we will do is take an initial-value problem and calculate what the error

should be with the above formula. The example we will use is the initial-value problem

21
4 1

1 1

y t y t t

y

This has an exact solution:

13 1 2
() 4 3 3tanh 6 3 tanh 3 6 3

6 3 3
y t t t

.

Next, let us evaluate the error term at t = 1:

 2 3 3 3 31 1
1, 1 1 1 6 16

4 12
10y y yf h h h

y

.

Thus, the error should approach 10h3 as h goes to zero. We can therefore approximate y(1.1), y(1.01), y(1.001), and

so on and compare it to the actual solution by evaluating the above function at these points:

h
Exact solution

y(1 + h)

Approximation

using Heun’s

method

Error
Approximation

of the Error

0.1 1.26945970562049697770861211078 1.262 0.74597 × 10–2 10–2

0.01 1.02961168810797661702844033508 1.029602 0.968810 × 10–5 10–5

0.001 1.00299601196808298297084006823 1.002996002 0.9968083 × 10–8 10–8

0.0001 1.00029996001199680083178245722 1.000299960002 0.999680083 × 10–11 10–11

0.00001 1.00002999960001199968000831978 1.000029999600002 0.99996800083 × 10–14 10–14

0.000001 1.00000299999600001199996800008 1.000002999996000002 0.999996800008 × 10–17 10–17

As you can see, the error is not precisely 10 h3, but as h gets closer to zero, the error approaches the predicted error.

22

Implementation of Heun’s method
Here is a C++ implementation of Heun’s method. The differences between this implementation and that of Euler’s

method are shown in bold red.

#include <vector>
#include <tuple>
#include <cassert>

std::tuple< std::vector<double>, std::vector<double>, std::vector<double> >
 heun(double f(double, double),
 double t0, double y0, double tf,
 size_t n) {
 assert(n > 0);

 double h{(tf - t0)/n};

 std::vector<double> t(n + 1);
 std::vector<double> y(n + 1);
 std::vector<double> dy(n + 1);

 y[0] = y0;

 for (size_t k{0}; k < n; ++k) {
 t[k] = t0 + k*h;

 double s0{f(t[k], y[k])};
 double s1{f(t[k] + h, y[k] + h*dy[k])};
 dy[k] = s0;

 y[k + 1] = y[k] + h*(s0 + s1)/2.0;
 }

 t[n] = tf;
 dy[n] = f(tf, y[n]);

 return std::make_tuple(t, y, dy);
}

23

Example of Heun’s method
Suppose we want to approximate the solution to the initial-value problem

 1
1 0.5

(0) 1.2

y t t y t

y

where we want to approximate y(2) with h = 1.0, 0.5 and 0.25. Here,

 , 1 0.5f t y t y .

First, we note that this does have a solution:

 0.5 20.50.05 5 2 e erf 0.5 2 erf 0.5 2 1 24 e
t t

y t t

This can be implemented as the C++ function

double y(double t) {
 double const SQRT_PI{std::sqrt(std::acos(-1.0))};
 double const ROOT_2_5{std::sqrt(2.0)*0.5};

 return 0.05*(10.0*ROOT_2_5*SQRT_PI*std::exp(0.5)*(
 std::erf(ROOT_2_5) + std::erf(ROOT_2_5*(t - 1))
) + 24.0)*exp(0.5*t*(t - 2.0));
}

This solution evaluated at this point is y(2.0) = 2.610686134642448.

Applying Heun’s method with h = 2, we have

0 0 0

1 00 0

0 1

1 0

,

0,1.2

0 1 1.2 0.5

0.7

,

0 2,1.2 2 0.7

2 1 0.2 0.5

0.3

2

0.7 0.3
1.2 2

2

0.8

h hs

s f t y

f

s f t y

f

s s
y y h

Thus, we are not off to a very good start, with an error approximately equal to 1.811, which is worse than Euler’s

method with two function evaluations.

24

Applying Heun’s method with h = 1, we have

0 0 0

1 00 0

0 1

1 0

,

0,1.2

0 1 1.2 0.5

0.7

,

0 1,1.2 1 0.7

1 1 0.2 0.5

0.5

2

0.7 0.5
1.2 1

2

1.1

h hs

s f t y

f

s f t y

f

s s
y y h

0 1 1

1 1 1 0

0 1

2 1

,

1,1.1

1 1 1.1 0.5

0.5

,

1 1,1.1 1 0.5

2 1 1.6 0.5

2.5

2

2.1
1.1 1

2

2 4

5

.

0.

s f t y

f

s f t y

f

s s
y

h hs

y h

The error has now been reduced to 0.2107.

25

Step size h = 1.0 h = 0.5 h = 0.25 h = 0.125

 t 4 calls 8 calls 16 calls 32 calls

0.0 1.2 1.2 1.2 1.2

0.125 1.12666015625

0.25 1.07890625 1.048980627459241

0.3750 1.077580380439758

0.5 1.04375 1.040158081054688 1.038332039951021

0.625 1.044104406965346

0.75 1.067800128459931 1.065607240975708

0.875 1.102903948033156

1.0 1.1 1.16328125 1.159431374445558 1.156787510939147

1.125 1.228813194618359

1.25 1.324569854896982 1.321390069588570

1.3750 1.437939527924248

1.5 1.58994140625 1.586734879789265 1.583136327587963

1.625 1.763257085796267

1.75 1.989975504128868 1.986673919411313

1.875 2.264549042161006

2.0 2.4 2.598040771484375 2.612547696535078 2.611812448757147

Recall that the exact solution is y(2.0) = 2.610686134642448, so the error when h = 0. 25 is 0.001862, while the

error when h = 0.125 is 0.001126, which is nowhere near one quarter the previous error.

26

n h
Function

calls

Approximation

of y(2.0)
Absolute error

 1 2.0 2 0.8 1.811

 2 1.0 4 2.4 0.2107

 4 0. 5 8 2.598040771484375 0.01265

 8 0. 25 16 2.612547696535078 0.001862

 16 0.125 32 2.611812448757147 0.001126

 32 0.0625 64 2.611054569394839 0.0003684

 64 0.03125 128 2.610789453526507 0.0001033

 128 0.015625 256 2.610713390760282 0.00002726

 256 0.0078125 512 2.610693128641439 0.000006994

 512 0.00390625 1024 2.610687905745948 0.000001771

1024 0.001953125 2048 2.610686580250618 0.0000004456

You will see that after n = 36, each time you double the number of steps, the error drops by approximately one

quarter.

27

4th-order Runge-Kutta method
To use Simpson’s rule, we must be able to calculate

2

6

a b
f a f f b

h

or in this case,

 0 0 0

d d d

d d 2 d

6

h
y t y t y t h

t t t
h

 .

Again, we don’t know the exact values, but we can find approximations of them. This is a formula found by Runge

and Kutta:

1. let 0 0 0,s f t y ,

2. let 1 0 0 0,
2 2

h h
s f t y s

, an estimate of the slope at 0 0,

2 2

h h
t y t

,

3. let 2 0 0 1,
2 2

h h
s f t y s

, a second estimate of the slope at 0 0,

2 2

h h
t y t

,

4. let 3 0 0 2,s f t h y hs , an estimate of the slope at 0 0,t h y t h , and

5. let 0 1 2 3

1 0

2 2

6

s s s s
y y h

 .

Note that we have two estimators of the slope. The error of this method is O(h5); however, if it is applied iteratively,

the error drops to O(h4).

28

Implementation of Runge-Kutta method
Here is a C++ implementation of the 4th-order Runge-Kutta method:

#include <vector>
#include <tuple>
#include <cassert>

std::tuple< std::vector<double>, std::vector<double>, std::vector<double> >
 heun(double f(double, double),
 double t0, double y0, double tf,
 size_t n) {
 assert(n > 0);

 double h{(tf - t0)/n};
 double h2{0.5*h};

 std::vector<double> t(n + 1);
 std::vector<double> y(n + 1);
 std::vector<double> dy(n + 1);

 y[0] = y0;

 for (size_t k{0}; k < n; ++k) {
 t[k] = t0 + k*h;

 double s0{f(t[k], y[k])};
 double s1{f(t[k] + h2, y[k] + h2*dy[k])};
 double s2{f(t[k] + h2, y[k] + h2*s1)};
 double s3{f(t[k] + h, y[k] + h*s2)};
 dy[k] = s0;

 y[k + 1] = y[k] + h*(s0 + 2*(s1 + s2) + s3)/6.0;
 }

 t[n] = tf;
 dy[n] = f(tf, y[n]);

 return std::make_tuple(t, y, dy);
}

29

Example of 4th-order Runge-Kutta method
Suppose we want to approximate the solution to the initial-value problem

 1
1 0.5

(0) 1.2

y t t y t

y

where we want to approximate y(2) with h = 1.0, 0.5 and 0.25. Here,

 , 1 0.5f t y t y .

First, we note that this does have a solution:

 0.5 20.50.05 5 2 e erf 0.5 2 erf 0.5 2 1 24 e
t t

y t t

This can be implemented as the C++ function

double y(double t) {
 double const SQRT_PI{std::sqrt(std::acos(-1.0))};
 double const ROOT_2_5{std::sqrt(2.0)*0.5};

 return 0.05*(10.0*ROOT_2_5*SQRT_PI*std::exp(0.5)*(
 std::erf(ROOT_2_5) + std::erf(ROOT_2_5*(t - 1))
) + 24.0)*exp(0.5*t*(t - 2.0));
}

This solution evaluated at this point is y(2.0) = 2.610686134642448.

Applying 4th-order Runge-Kutta method with h = 2, we have

30

0 0 0

1 0 0

2 0 0

3 0

0

0

1

2 2

12 2

2

,

0,1.2

0 1 1.2 0.5

0.7

,

0 1,1.2 1 0.7

1,0.5

1 1 0.5 0.5

0.5

,

0 1,1.2 1 0.5

1,1.7

1 1 1.7 0.5

0.5

,

0 2,1.2 2 0.5

2,2.2

2 1 2.2 0.5

2.7

h h

h h

s

s

h

s f t y

f

s f t y

f

f

s f t y

f

f

s f t y

f

f

y

hs

 0 1 2 3

0
6

0.5 0.5 2.7
1.

2 2

0.7 2 2

2.

2 2

5

6

3

s s s s
y h

Recall that with Euler’s method, when h = 0.5, we used four function evaluations and found an approximation of

y(2) equal to 1.671875. With Heun’s method, when h = 1, we also used four function evaluations, and the

approximation of y(2) was 2.4. With 4th-order Runge-Kutta, the approximation when h = 2 also uses four function

evaluations, but now the approximation is 2.53333···, which is even closer to the 16-digit

y(2) = 2.610686134642448.

31

Applying the 4th-order Runge Kutta method with h = 1, we have

02 2

12

0 0 0

1 0 0

2

2

0 20

3 0 0

0.075

,

0,1.2

0 1 1.2 0.5

0.7

,

0 0.5,1.2 0.5 0.7

0.5,0.85

0.5 1 0.85 0.5

,

0 0.5,1.2 0.5 0.075

0.5,1.2375

0.5 1 1.2375 0.5

0.11875

,

0 1,1.

h h

h h

s f t y

f

s f t y

f

f

s f t y

f

f

s f

s

s

h hst y

f

0 1 2 3

1 0

2 1 0.11875

1,1.08125

1 1 1.08125 0.5

0.5

6

0.11875 0.5
1.2 1

6

2 2

0.7 2 0.075 2

1.152083

f

s s s s
y y h

0 1 1

1 1 1

2 1 2 21

02 2

1

,

1.0,1.52083

1 1 1.52083 0.5

0.5

,

1 0.5,1.52083 0.5 0.5

1.5,1.402083

1.5 1 1.402083 0.5

1.2010416

,

1 0.5,1.52083 0.5 0.075

1.5,1.2375

1.5 1 1.2375 5

.3

0.

1

h h

h h

s f t y

f

s f t y s

f

f

s f t y

f

f

s

2

2 2 1.376302

3 0 0

0 1 2 3

1 0

0.5 1.2010416 3 3.028385 1

6

08 4 6

3

,

1 1,1.52083 1 0.11875

2,1.08125

2 1 1.08125 0.5

3.028385416

6

1.520

7630208

2 2

2.5992621

83

7

1

52

s f t y

f

f

s s s s
y

h hs

y h

The error has now been reduced to 0.01142.

32

Step size: h = 2.0 h = 1.0 h = 0.5 h = 0.25

 t 4 calls 8 calls 16 calls 32 calls

0.0 1.2 1.2 1.2 1.2

0.25 1.077087720235189

0.5 1.037556966145833 1.037608979017124

0.75 1.064694810566422

1.0 1.152083333333333 1.155539366934035 1.155645642124058

1.25 1.319964728593053

1.5 1.581236177180135 1.581426855926445

1.75 1.984872474943279

2.0 2.533333333333333 2.599262152777778 2.610087820593202 2.610654583581414

Recall that the exact solution is y(2.0) = 2.610686134642448, so the error when h = 0. 5 is 0.0005983, while the

error when h = 0.025 is 0.00003155, which is approximately one-sixteenth the previous error.

33

n h
Function

calls

Approximation

of y(2.0)
Absolute error

 1 2.0 2 2.533333333333333 0.07735

 2 1.0 4 2.599262152777778 0.01142

 4 0. 5 8 2.610087820593202 0.0005983

 8 0. 25 16 2.610654583581414 0.00003155

 16 0.125 32 2.610684379040146 0.000001756

 32 0.0625 64 2.610686032624805 0.0000001020

 64 0.03125 128 2.610686128526171 0.000000006116

 128 0.015625 256 2.610686134268633 0.0000000003738

 256 0.0078125 512 2.610686134619355 0.00000000002309

 512 0.00390625 1024 2.610686134641016 0.000000000001433

1024 0.001953125 2048 2.610686134642358 0.00000000000009059

You will see that after n = 16, each time you double the number of steps, the error drops by approximately one

quarter.

34

Iterative methods
One problem with Euler’s method, Huen’s method and 4th-order Runge-Kutta is that we do not know the error the

overall approximation. If sufficiently high derivatives and partial derivatives are bounded, we know the error is

bounded, but suppose we use n = 10 for an IVP. What is the actual error of y(tf)? Is yn a good approximation of y(tf)

or not? We will look at how we can estimate the error of an approximation iteratively: by first using n steps, then 2n

steps, etc. We will first do this with Euler’s method, and then with 4th-order Runge-Kutta.

Iterative Euler’s method: estimating the error of Euler’s method
Suppose we now want to get a good approximation to a solution to a differential equation; that is, we would like to

ensure that our approximation of |y(tf) – yn| < abs. Now, how can we ensure this?

Recall that if we applied Euler’s method, that if we double the number of points, then this reduces the error by

approximately a factor of two. Thus, if h is small enough, the we could find two approximations:

 y0, y1, y2, y3, …, yn–2, yn – 1, yn

approximating the points

 0 0 0 0 0 0 0, , 2 , 3 , , 2 , 1 , fy t y t h y t h y t h y t n h y t n h y t nh y t ,

and

 z0, z1, z2, z3, z4, z5, z6, z7, …, z2n–4, z2n–3, z2n–2, z2n–1, z2n

approximating the values

 0 0 0 0 0 0 02 2 2 2 2 2
, , 2 , 3 , , 2 2 , 2 1 , 2h h h h h h

fy t y t y t y t y t n y t n y t n y t .

Thus, from this, we have that in general yk and z2k both approximate 0y t kh and specifically,

1. yn is an approximation of y(tf) when n steps, and

2. z2n is an approximation of y(tf) when 2n steps.

Now, 2nz has half the error of ny , so

2 1

2

n f

n f

z y t

y y t

, then we can write

 22 2n f n fz y t y y t

or

 2 2n f n nz y t y z .

Thus, the error of z2n is approximated by 2n ny z . Additionally, bringing the actual values to one side, we have

 22f n ny t z y

so this is an even better estimate of the actual value of y(tf). Looking at how we used multiple steps of Euler’s

method to approximate y(2), we had the following entries in the table:

35

n Approximation Error

 256 2.590963000669263 0.01972

 512 2.600793646021044 0.009892

1024 2.605732112846550 0.004954

First, we see that the difference 2.600793646021044 – 2.590963000669263 = 0.009830645351781 is indeed a good

approximation of the error of the approximation with 512 steps.

Now, let us calculate this approximation:

 2.600793646021044 2.5909632 2

 2.61

00

06

0669

2429137282

3

5

26y

You will now note that the error of extrapolated estimation of y(2) = 2.610686134642448 is now 0.00006184, which

is significantly better than even the approximation using n = 1024 steps. Thus, we have a very good estimation of

the error of z512 and we can use this estimate to get an even better approximation of y(2).

Now, one important question we must ask is what do we return? Having calculated both y0, …, yn and z0, …, z2n,

surely the second is more accurate than the first. However, notice that if we have both yk and z2k, then the

approximation 22 k kz y is more accurate than either of the first two approximations, and thus, instead, we will only

return a vector containing n + 1 entries with the kth entry (from 0 to n) being assigned 22 k kz y .

Thus, we may proceed as follows:

1. Let n begin with some reasonable number of intervals.

2. Approximate ny creating a vector y of size n + 1 (indexed from 0 to n).

3. Approximate 2nz creating a vector z of size n + 1 (indexed from 0 to 2n), and

a. if
2 absn ny z , we are done, and let our approximation of y(tf) be 22f n ny t z y , and in

general, we could find better approximations of each point: 22k k ky t z y ,

b. otherwise, let y ← z, n ← 2n and return to Step 3.

36

Implementation of iterative Euler’s method
Here is a C++ implementation of the iterative Euler’s method:

#include <vector>
#include <tuple>
#include <cassert>
#include <stdexcept>

std::tuple< std::vector<double>, std::vector<double>, std::vector<double> >
 iterative_euler(double f(double, double),
 double t0, double y0, double tf,
 std::size_t n, std::size_t N, double eps_abs) {
 assert(n > 0);

 double h{(tf - t0)/n};

 std::vector<double> t(n + 1);
 std::vector<double> y(n + 1);
 std::vector<double> dy(n + 1);

 // Find the approximation for 'n' intervals
 y[0] = y0;

 for (std::size_t k{0}; k < n; ++k) {
 t[k] = t0 + k*h;

 double s0{ f(t[k], y[k])};
 dy[k] = s0;

 y[k + 1] = y[k] + h*s0;
 }

 t[n] = tf;
 dy[n] = f(tf, y[n]);

37

 std::vector<double> s{};
 std::vector<double> z{};
 std::vector<double> dz{};

 for (std::size_t m{2*n}; m <= N; m *= 2) {
 h /= 2.0;

 s = std::vector<double>(m + 1);
 z = std::vector<double>(m + 1);
 dz = std::vector<double>(m + 1);

 z[0] = y0;

 for (std::size_t k{0}; k < m; ++k) {
 s[k] = t0 + k*h;

 double s0{f(s[k], z[k])};
 dz[k] = s0;

 z[k + 1] = z[k] + h*s0;
 }

 s[m] = tf;
 dz[m] = f(tf, z[m]);

 double error{std::abs(z[m] - y[n])};

 if (error < eps_abs) {
 for (std::size_t k{1}; k <= n; ++k) {
 y[k] = 2*z[2*k] - y[k];
 dy[k] = f(t[k], y[k]);
 }

 return std::make_tuple(t, y, dy);
 } else {
 n = m;
 t = s;
 y = z;
 dy = dz;
 }
 }

 throw std::runtime_error("Euler's method did not find a solution");
}

38

Example of the iterative Euler’s method
As an explicit example, consider the initial value problem

1
1

0 1

y t ty t

y

Approximating y(1) with n = 10 yields the approximate points, and then again with n = 20 yields these

approximations, where you will see that the error is indeed approximately halved, but also that the extrapolated

approximation is significantly better than either approximation.

t
Approximation

with n = 10

Approximation

with n = 20
Exact solution

Error

with

n = 10

Error

with

n = 20

Extrapolated

approximation

2z2k – yk

Error

0 1 1 1 0 0 1 0

0.05 1.05 1.048709135083809 –0.001291

0.1 1.1 1.097375 1.094679811574692 –0.005320 –0.002695 1.09475 –0.00007019

0.15 1.141888125 1.137693090879509 –0.004195

0.2 1.189 1.1833239640625 1.177553218608495 –0.01145 –0.005771 1.177647928125 –0.00009471

0.25 1.221490724421875 1.214089428036366 –0.007401

0.3 1.26522 1.256222090366602 1.247157419635286 –0.01806 –0.009065 1.247224180733203 –0.00006676

0.35 1.287378759011103 1.276640497461595 –0.01074

0.4 1.3272634 1.314849630728408 1.302450349325715 –0.02481 –0.01240 1.302435861456816 0.00001449

0.45 1.338552638113840 1.324527464012505 –0.01403

0.5 1.374172864 1.358435203756279 1.342841185204080 –0.03133 –0.01559 1.342697543512557 0.0001436

0.55 1.374474323662372 1.357389408045940 –0.01708

0.6 1.4054642208 1.386676279761656 1.368197930352226 –0.03727 –0.01849 1.367888338723313 0.0003096

0.65 1.395075991368807 1.375319476137191 –0.01976

0.7 1.421136367552 1.399736021649321 1.378832414369550 –0.04230 –0.02090 1.378335675746641 0.0004967

0.75 1.400745260891594 1.378839200470858 –0.02191

0.8 1.42165682182336 1.398217313608160 1.375464572031941 –0.04619 –0.02275 1.374777805392959 0.0006868

0.85 1.392288621063833 1.368853533435354 –0.02344

0.9 1.407924276077491 1.383116354668620 1.359169166499498 –0.04876 –0.02395 1.358308433259749 0.0008607

0.95 1.370876118708532 1.346590305874907 –0.02429

1 1.381211091230517 1.355759503069877 1.331309118719710 –0.04990 –0.02445 1.330307914909237 0.001001

39

Solving the same problem we did previously using Euler’s method, we will now look at the number of steps

required to ensure that the error is less than a specified error. Because Euler’s method is O(h), if we halve the

allowable error, the number of steps should double.

m
Acceptable error

(abs = 2–m)

Steps

required

 0 1 2
 1 0.5 4
 2 0.25 8
 3 0.125 32
 4 0.06252 64
 5 0.03125 128
 6 0.015625 256
 7 7.812 × 10–3 512
 8 3.906 × 10–3 1024
 9 1.953 × 10–3 2048
10 9.766 × 10–4 4096
11 4.883 × 10–4 8192
12 2.441 × 10–4 16384
13 1.221 × 10–4 32768
14 6.104 × 10–5 65536
15 3.052 × 10–5 131072
16 1.526 × 10–5 262144
17 7.629 × 10–6 524288
18 3.815 × 10–6 1048576
19 1.907 × 10–6 2097152
20 9.537 × 10–7 4194304
21 4.768 × 10–7 8388608

Because we ultimately use extrapolation to calculate the resulting approximations, the actual values returned will be more

accurate than suggested by the acceptable error; however, because we have no assurance as to how large the error of the

extrapolated values, we cannot risk reducing the number of steps.

40

41

Iterative 4th-order Runge-Kutta method: estimating the error
Suppose we now want to get a good approximation to a solution to a differential equation; that is, we would like to

ensure that our approximation of |y(tf) – yn| < abs. Now, how can we ensure this?

Recall that if we applied the Runge-Kutta method, that if we double the number of points, then this reduces the error

by approximately a factor of 16. Thus, if h is small enough, the we could find two approximations, one with n

approximations and one with 2n steps, just like we did with the iterative Euler’s method. Thus, from this, we have

that in general yk and z2k both approximate 0y t kh and specifically,

1. yn be an approximation of y(tf) when n steps, and

2. z2n be an approximation of y(tf) when 2n steps.

Now, the error of the z2n approximation is one-sixteenth that of yn, so

Now, if

2 1

16

n f

n f

z y t

y y t

, then we can write

 216 16n f n fz y t y y t .

Adding 2f ny t z to both sides, we get that

 2 215 15n f n nz y t y z

or

 2

2
15

n n

n f

y z
z y t

Thus, a good approximation of the error of z2n is 2

15

n ny z
. We can now also use this to find a better approximation

of fy t , as we can isolate fy t in the equation 216 16n f n fz y t y y t to get:

 215 16f n ny t z y

so

 216

15

n n

f

z y
y t

 .

This is thus a better approximation than either previous approximation.

42

We can actually see this, as with our example,

n Approximation Error

 128 2.610686128526171 0.000000006116

 256 2.610686134268633 0.0000000003738

First, we note that
2.610686134268633 2.610686128

0.0000000003828308
15

526171
 is already a reasonable

approximation of the approximation with 256 steps, but also, we can now find a better approximation by calculating:

2.610686134268633 2.6106816

15

 2.6106861346514

612852

6

6171

4

fy t

You will now note that the error of extrapolated estimation of y(2) = 2.610686134642448 is now

0.000000000009016, or smaller than the error of the last estimate by a factor of 41.46. Thus, we have a very good

estimation of the error of y(2).

Thus, we may proceed as follows:

1. Let n begin with some reasonable number of intervals.

2. Approximate ny creating a vector y of size n + 1 (indexed from 0 to n).

3. Approximate 2nz creating a vector z of size n + 1 (indexed from 0 to 2n), and

a. if 2

abs
15

n ny z

 , we are done, and let our approximation of y(tf) be 216

15

n n

f

z y
y t

 , and in

general, we could find better approximations of each point: 216

15

k k

k

z y
y t

 ,

b. otherwise, let y ← z, n ← 2n and return to Step 3.

Now, this technique is, as we will see, significantly better than the approximation using an iterative Euler’s method,

but

1. it requires us to redo the entire calculation with twice the number of points at each step, thus requiring

n + 2n + 4n + 8n + … calculations, and

2. all intervals are the same…

This last point is important, because if a solution is not changing rapidly on one time interval, then a larger step size

should be reasonable; however, if the solution is changing rapidly, we need a smaller step size. Thus, we will next

consider adaptive techniques.

43

Implementation of iterative 4th-order Runge-Kutta method
Here is a C++ implementation of the iterative 4th-order Runge-Kutta method:

#include <vector>
#include <tuple>
#include <cassert>
#include <stdexcept>

std::tuple< std::vector<double>, std::vector<double>, std::vector<double> >
 iterative_runge_kutta(double f(double, double),
 double t0, double y0, double tf,
 std::size_t n, std::size_t N, double eps_abs) {
 assert(n > 0);

 double h{(tf - t0)/n};
 double h2{h/2.0};

 std::vector<double> t(n + 1);
 std::vector<double> y(n + 1);
 std::vector<double> dy(n + 1);

 y[0] = y0;

 for (std::size_t k{0}; k < n; ++k) {
 t[k] = t0 + k*h;

 double s0{f(t[k], y[k])};
 double s1{f(t[k] + h2, y[k] + h2*dy[k])};
 double s2{f(t[k] + h2, y[k] + h2*s1)};
 double s3{f(t[k] + h, y[k] + h*s2)};
 dy[k] = s0;

 y[k + 1] = y[k] + h*(s0 + 2.0*(s1 + s2) + s3)/6.0;
 }

 t[n] = tf;
 dy[n] = f(tf, y[n]);

44

 std::vector<double> s{};
 std::vector<double> z{};
 std::vector<double> dz{};

 for (std::size_t m{2*n}; m <= N; m *= 2) {
 h = h2;
 h2 /= 2.0;

 s = std::vector<double>(m + 1);
 z = std::vector<double>(m + 1);
 dz = std::vector<double>(m + 1);

 z[0] = y0;

 for (std::size_t k{0}; k < m; ++k) {
 s[k] = t0 + k*h;

 double s0{f(s[k], z[k])};
 double s1{f(s[k] + h2, z[k] + h2*s0)};
 double s2{f(s[k] + h2, z[k] + h2*s1)};
 double s3{f(s[k] + h, z[k] + h*s2)};
 dz[k] = s0;

 z[k + 1] = z[k] + h*(s0 + 2.0*(s1 + s2) + s3)/6.0;
 }

 s[m] = tf;
 dz[m] = f(tf, z[m]);

 double error{std::abs(z[m] - y[n])/15.0};

 if (error < eps_abs) {
 for (std::size_t k{1}; k <= n; ++k) {
 y[k] = (16.0*z[2*k] - y[k])/15.0;
 dy[k] = f(t[k], y[k]);
 }

 return std::make_tuple(t, y, dy);
 } else {
 n = m;
 t = s;
 y = z;
 dy = dz;
 }
 }

 throw std::runtime_error(
 "The iterative Runge-Kutta method did not find a solution"
);
}

45

Example of the iterative 4th-order Runge-Kutta method
Solving the same problem we did previously using the Runge-Kutta method, we will now look at the number of

steps required to ensure that the error is less than a specified error. Because the 4th-order Runge-Kutta method is

O(h4), if we divide the error by 24 = 16, the number of steps should double.

m
Acceptable error

(abs = 2–m)

Steps

required

 0 1 1
 1 0.5 1
 2 0.25 1
 3 0.125 1
 4 0.06252 1
 5 0.03125 1
 6 0.015625 1
 7 7.812 × 10–3 1
 8 3.906 × 10–3 2
 9 1.953 × 10–3 2
10 9.766 × 10–4 2
11 4.883 × 10–4 4
12 2.441 × 10–4 4
13 1.221 × 10–4 4
14 6.104 × 10–5 4
15 3.052 × 10–5 8
16 1.526 × 10–5 8
17 7.629 × 10–6 8
18 3.815 × 10–6 8
19 1.907 × 10–6 16
20 9.537 × 10–7 16
21 4.768 × 10–7 16

Instead of showing the halving of the step size, let us divide the acceptable error by sixteen:

m
Acceptable error

(abs = 2–m)

Steps

required

 0 1 1
 4 6.250 × 10–2 1
 8 3.906 × 10–3 2
12 2.441 × 10–4 4
16 1.526 × 10–5 8
20 9.537 × 10–7 16
24 5.960 × 10–8 32
28 3.725 × 10–9 64
32 2.328 × 10–10 128
36 1.455 × 10–11 256
40 9.095 × 10–13 512
44 5.684 × 10–14 1024
48 3.553 × 10–15 2048

Thus, using only 2048 steps or four times as many function evaluations, we can approximate y(2) with extreme accuracy. The last

approximation of y(2) is 2.610686134642437 which matches most decimal digits of y(2.0) = 2.610686134642448.

46

Adaptive methods
Now, you are applying a method like Heun’s or Euler’s, and you know that the error is bounded so long as the

behavior of the higher derivatives are not too large. The problem is, how do you know how large the error is if you

don’t know the solution? Additionally, these techniques can be very expensive: if you were to use a very small value

of h, you will have to iterate many times, so you will have an unnecessarily accurate answer that took far too long to

calculate.

Adaptive Euler-Heun method
Here is an idea: suppose we estimate y(tk + h) with Euler’s method, but then also estimate it with Heun’s method:

 s0 = f(tk, yk)

 yk+1 = yk + h s0

 s1 = f(t0 + h, yk + h s0)

 zk+1 = y0 + h 0.5(s0 + s1)

If the actual answer is y(tk + h), then the error of each of these approximations is |yk+1 – y(tk + h)| and |z k+1 – y(tk + h)|.

If, however, zk+1 is much more accurate than yk+1, then

 1 0 1 1k k ky y t h y z .

Thus, we will estimate how good the solution to Euler’s method is by contrasting it with the solution to Heun’s

method.

For example, let us consider the rather simple IVP where
 1 2 , 0 1y t y t ty t y . This has the exact solution

1

1 2 t
y t

t e

. If we use h = 0.1, we estimate the solution with Euler’s method: y1 = 1.1, or Heun’s method

z1 = 1.09895. The actual solution, to 16 decimal digits, is 1.099293901893687. We see that

 1 0.1 1.1 0.1 0.0007061y y y while 1 0.1 1.09895 0.1 0.0003439z y y .

Observe now that 1 1 1.1 1.09895 0.00105y z , which is in the ballpark of the actual error of Euler’s method.

The next question is: what is the error we are willing to tolerate?

One issue with IVPs is that we may not know at which point we’d like to stop approximating our solution. Let us

therefore assume we are willing to accept at most abs per unit time. Thus, given an initial condition at t = 0 and we

are willing to accept abs per unit time, then in approximating y(10), the error should be no more than abs10 .

Alternatively, if we are quite certain we are estimating y(20) and we want the error to be no greater than 10 –5, then

we should use
5 7

abs 10 20 5 10 .

Now, at any one point, we are given our current approximation (tk, yk), and we’d like to approximate the solution at

time tk + h, and we do so by using two techniques:

1. using Euler’s method to calculate a first approximation yk+1 = yk + h f(tk, yk) and

2. using Heun’s method to calculate a second approximation zk+1.

47

We estimate the error of Euler’s method by calculating
1 1k ky z , but as we saw above, while it is in the same

ballpark of the error, it is not necessarily a very precise approximation of the error. Thus, we will assume the actual

error of Euler’s method is within no larger that
1 12 k ky z ; that is, we are being rather cautious. Thus, we want to

ensure that
1 1 abs2 k ky z h , for

1. if
1 1 abs2 k ky z h , our step size is likely too small—our approximation is too good, we can use a

larger h, and

2. if
1 1 abs2 k ky z h , our step size is likely too large—too much error, we should use a smaller h.

The question is, how much should we change the size of h? If we use one step of Euler’s method, its error is O(h2),

so the error is approximately ch2. Thus,
2

1 12 k kch y z under the assumption that
1 12 k ky z is either a

reasonable or overestimation of the error. Now, we want to find an h so that

2

absc ah ah ,

however, we see that
2 2 2 2 2 2

1 12 k kc ah ca h ch a y z a . Thus, substituting this into the above equation,

we have

 2

1 1 abs2 k ky z a ah ,

or, solving for a, we determine that the correct scaling factor is

abs

1 12 k k

h
a

y z

.

Thus, the ideal step size to achieve the required error is ah .

Now, if 1a , this suggests our step size is too small, so we can use the calculated approximation of y1 or z1 and just

increase our step size for the next iteration; however, if a < 1, this suggests that our step size is too large—the

associated error is too large. Thus, our current approximation is too poor, so we should try again but this time using

a smaller step size.

One small problem: The issue is, if we always use the optimal step size, then there is essentially a 50-50 chance that

with the next step, the step size will be too large. Thus, instead, we always ensure that the step size is 90% of the

optimal step size, so always let the new value of h be 0.9ah .

Now, here is an interesting problem: We are using Heun’s method to approximate the error of Euler’s method.

Should we be using yk+1 or zk+1 as our next approximation? As we are estimating the error of Euler’s method, the

default is that we should use yk+1. Using zk+1 is somewhat questionable, as we don’t know the error of that technique.

If we were, this is a technique called local extrapolation and in this case, we will use this for Euler and Heun.

48

Yet anohter issue: because both yk+1 and zk+1 are approximations, it may by some fluke that
1 1k ky z may either

seriously over estimate or underestimate the error in question. Thus, we should be very careful in adjusting h too

much. Thus, we will adopt the following rule:

1. if 0.9a > 2 then restrict the new value of h to be 2h, and

2. if 0.9a < ½ then restrict the new value of h to be ½h.

One final issue: at a discontinuity in the ODE, no step size will ever be sufficiently small to ensure that the requisite

error is satisfied. Consequently, it is necessary to ensure that there is some minimal hmin value that is to be used, and

thus, if this minimal hmin value is used, the result will be accepted regardless of the calculation of a.

Our algorithm is as follows:

1. let k ← 0,

2. while tk ≠ tf

a. if h ≤ hmin, set h = hmin.

b. set 0 ,k ks f t y ,

c. set 1 0k ky y hs ,

d. set 1 0,k ks f t h y hs ,

e. set
0 1

1
2

k k

s s
z y h

 ,

f. calculate abs

1 12
0.9

h
a

y z

,

g. if a ≥ 0.9 or h = hmin,

i. set yk+1 ← 1ky ,

ii. set tk+1 ← tk + h,

iii. set k ← k + 1.

h. if a ≥ 2, let h ← 2h,

else if a < ½, let h ← ½ ah,

else let h ← ah.

i. if tk + h > tf, let h ← tf – tk and let tk ← tf.

Note that we only move onto the next point if a ≥ 1, otherwise, we try again with a smaller step size.

Now, we do have one problem here: recall that we are using floating-point numbers. In this case, it may happen that

h is so small that when you actually calculate tk+1 ← tk + h, it leaves tk unchanged, even though h ≠ 0.

Implementation issues
In all previous techniques, we were always aware of the number of steps, and thus we could always pre-allocate

sufficient memory for the resulting vectors. For an adaptive technique, there could be arbitrarily many entries.

Now, you will recall from your algorithms and data structures course that if you are using a fixed-size array and you

are required to increase the capacity of the array, you have two strategies:

1. increase the capacity of the array by a fixed amount and copy the old entries over, or

2. increase the capacity of the array by a scalar multiply (say, double the size) and copy the old entries over.

49

Neither of these is ideal, for in the first case, while the wasted memory is now (1), the amortized run-time of

inserting an entry into the array is (n); while in the second case, the wasted memory is now (n) while the

amortized run-time is of inserting an entry into the array is (1).

An alternative is to use a queue data structure where all operations are (1) and where a reasonable implementation

will ensure that there is only (1) wasted memory. This could be achieved, for example, by having linked list of

arrays storing the entries in the queue. Once one array is full, allocate another node in the linked list and start filling

the new array. In our implementation, however, we will simply use the STL queue data structure.

Issues with queues, however, include that they are difficult to search, and therefore when the algorithm is finished, it

will be necessary to copy them all back into a vector; however, this is reasonably straight-forward.

50

Implementation of the adaptive Euler-Heun method
Here is a C++ implementation of the adaptive Euler-Heun method.

#include <vector>
#include <tuple>
#include <cassert>

std::tuple< std::vector<double>, std::vector<double>, std::vector<double> >
 adaptive_euler_heun(double f(double, double),
 double t0, double y0, double tf,
 double h, double h_min, double eps_abs) {
 assert(h > 0);

 std::size_t k{0};

 std::queue<double> q_t{};
 std::queue<double> q_y{};
 std::queue<double> q_dy{};

 q_t.push(t0);
 q_y.push(y0);

 while (t0 < tf) {
 double s0{f(t0, q_y.back())};
 q_dy.push(s0);
 double t1, z1, a;
 bool using_h_min;

 do {
 using_h_min = (h <= h_min);

 if (using_h_min) {
 h = h_min;
 }

 t1 = t0 + h;

 if (t1 > tf) {
 t1 = tf;
 h = tf - t0;
 }

 // Approximation using Euler's method
 double y1{q_y.back() + h*s0};

 double s1{f(t0 + h, y1)};
 // Approximation using Heun's method
 z1 = q_y.back() + h*(s0 + s1)/2.0;

 a = 0.9*eps_abs*h/(2.0*std::abs(z1 - y1));

 if (a >= 2.0) {
 h = 2.0*h;
 } else if (a <= 0.5) {
 h = 0.5*h;
 } else {
 h = a*h;
 }
 } while ((a < 0.9) && !using_h_min);

 q_t.push(t1);
 q_y.push(z1); // Store result from Heun's method

 t0 = t1;
 }

 q_dy.push(f(t0, q_y.back()));

 assert((q_t.size() == q_y.size()) && (q_t.size() == q_dy.size()));

 std::size_t n{q_t.size()};

 std::vector<double> t(n);
 std::vector<double> y(n);
 std::vector<double> dy(n);

 // Copy the approximate values from the queues into the vectors
 for (std::size_t k{0}; k < n; ++k) {
 t[k] = q_t.front();
 y[k] = q_y.front();
 dy[k] = q_dy.front();
 q_t.pop();
 q_y.pop();

51

 q_dy.pop();
 }

 return std::make_tuple(t, y, dy);
}

52

Examples of the adaptive Euler-Heun method
Suppose we want to approximate the solution to the initial-value problem

 1
1 0.5

(0) 1.2

y t t y t

y

where we want to approximate y(2) with an initial value of h = 0.01 using the Euler and Heun methods. The

maximum error we will be willing to accept is abs = 0.5.

k tk yk

 0 0 1.2

 1 0.01 1.193

 2 0.1288589540413766 1.11204873217104

 3 0.2548170732166789 1.053005700603626

 4 0.4087838533621759 1.009174149730043

 5 0.5930116274660248 0.9913703680442406

 6 0.807602770909739 1.012083517937175

 7 1.038894018000716 1.082691632357804

 8 1.222883273641074 1.182434089652769

 9 1.373348562334614 1.297321075521263

10 1.49726426362119 1.419297862678912

11 1.600916695266546 1.544278451617767

12 1.689074377936684 1.67016609767054

13 1.765225412359968 1.795881454192293

14 1.831914480642036 1.920873715601325

15 1.8910172390656 2.044871459957359

16 1.943937625153487 2.167753428493952

17 1.997044877792072 2.302976390969048

18 2 2.311239417439521

Compared to the correct solution y(2.0) = 2.610686134642448, the error is 0.2994, which is on the order of the

maximum allowable error. Plotting the approximate points versus the exact solution, we see that the approximation

shares the behavior of the actual solution:

53

There are 19 points, so 18 intervals, and looking at the width of consecutive intervals, we see that the width of the

intervals first increases, and then begins to decrease.

Recall that the error of Euler’s method is proportional to the second derivative, so the larger the second derivative,

the larger the error, and so we must use a correspondingly smaller step size:

If you plot the second derivative of the solution, you will see that the smallest step size corresponds with where the

second derivative is at a minimum and as the second derivative increases, the step size increases:

We will now look at two variations:

1. First, we note that the allowed error was abs = 0.5, but the actual error was significantly smaller.

2. Next, we will see what happens to the final error when we use abs = 0.25.

54

Next, we now divide the requisite absolute error by half, to 0.25:

k tk yk

 0 0 1.2

 1 0.01 1.193

 2 0.0694294770206883 1.15252436608552

 3 0.131013123781153 1.117267407951197

 4 0.1991939554783665 1.085161687381958

 5 0.2744770430436135 1.057381924036714

 6 0.3576328179438272 1.035166454621805

 7 0.4491711422787923 1.02006657106115

 8 0.5490797141597694 1.013884018411813

 9 0.6564300675588123 1.018480667000217

10 0.7690232211341611 1.035378722481034

11 0.8833739280709005 1.065207282518167

12 0.9953190574906565 1.10727279844303

13 1.101106989932274 1.159618457313987

14 1.198315822126041 1.219620174626288

15 1.276885778999757 1.277908866773209

16 1.355831295868995 1.345315295753892

17 1.419636489931812 1.407761776396204

18 1.483701974675043 1.477641089235152

19 1.541830729763125 1.548252291860094

20 1.594503623505865 1.618775537809694

21 1.642493843305843 1.688954895856688

22 1.686467705751836 1.758659761469926

23 1.726977525130752 1.827820682565525

24 1.764480004198793 1.896404637104159

25 1.799354101956823 1.964400877390409

26 1.831916021433189 2.031812253028917

27 1.862431309911914 2.098649802898627

28 1.891124484209522 2.164929351195461

29 1.918186651087179 2.230669350203172

30 1.943781543780426 2.295889508913987

31 1.968050320464888 2.360609922934814

32 1.991115397938426 2.424850527435741

33 2 2.450645252087435

Compared to the correct solution y(2.0) = 2.610686134642448, the error is 0.1600, which approximately half the

previous error when we required an error of 0.5.

55

Let’s now look at a more demonstrative example. The differential equation

2
100 210

0 1.2

td
y t t e

y

y
dt

describes a decaying exponential where a forcing function with unit impulse affects the system at approximately

time t = 2. An approximation to this using the adaptive Euler-Heun technique with a maximum error of 1:

k tk yk

 0 0 1.2

 1 0.01 1.188

 2 0.1975000000001595 0.9652499999998105

 3 0.3868939393940987 0.7824374999998466

 4 0.6199941724943774 0.6000511363634831

 5 0.9075570768797683 0.4274986888110457

 6 1.282525119375567 0.2672003422981639

 7 1.375630045889661 0.2423233506472151

 8 1.544393696206725 0.2014558427151085

 9 1.657563922131868 0.1804369061874284

10 1.690359470036848 0.1794516723021727

11 1.729099717872922 0.1824441794448262

12 1.760141737412585 0.1907623223300844

13 1.786408228476261 0.2033370360692868

14 1.809708467988044 0.2196092758817238

15 1.833228214176173 0.2412773669474623

16 1.854840163838437 0.2664798007798025

17 1.875695954669577 0.2956631406054607

18 1.896824904877933 0.3299212630805546

19 1.919408773055457 0.3712923787380395

20 1.945470583961783 0.4241160660616655

21 1.980400687350985 0.5007784635455076

22 2.025237606953853 0.6035988747248763

23 2.04709159839882 0.6510829136580895

24 2.069564912104507 0.6964279168462464

25 2.089134996127231 0.7317142052884810

26 2.108968184982086 .7630716220221758

27 2.126981624957125 0.7870894432135407

28 2.144203041795319 0.8059982139043934

29 2.161300084545617 0.8208956055497342

30 2.178767674128301 0.8322690360325411

31 2.197088932385955 0.8402680963595561

32 2.216843828978687 0.844770799995231

33 2.23884808632352 0.8453413452841601

34 2.264417393850828 0.8410533703544706

35 2.296006559720823 0.8300027705026978

36 2.339180586605646 0.807791963700681

37 2.411474947594179 0.7608860930803515

38 2.640154441259184 0.5962485283721206

39 3.055765119212582 0.3484829371432204

40 3.43334076657958 0.216904266555858

41 4 0.0939934611436971

56

Plotting a solution, we see that when the concavity of the solution begins to change rapidly, the step size begins to

quickly adjust, and yet when the concavity is closer to zero, the step size subsequently increases in size.

Please note, the acceptable error in this example was abs = 1, so the approximation is not required to be very precise;

however, we will now look at other examples of adaptive techniques that result in significantly more precise

approximations with significantly fewer steps.

57

Adaptive Runge-Kutta-Fehlberg method
Fehlberg came up with a better adaptive technique where he found two approximations: one O(h5) and the other

O(h6) for one step. The algorithm then used the higher-order approximation to estimate the error of the lower-order

approximation. The choice of coefficients in the algorithm were such that the error of the 5 th-order approximation is

minimized, and thus it is necessary to use the 5th-order approximation in the result.

First, you calculate six samples of the slope throughout the interval [tk, tk + h]:

0

1 1
1 04 4

3 3 31
2 0 18 8 4 4

161 600 60812 12
3 0 1 213 13 169 169 169

439 3680 845
4 0 1 2 3216 513 4104

16 7088 18591 1
5 0 1 2 32 2 27 2565 2052

,

,

,

,

1 , 1 8

, 4

k k

k k

k k

k k

k k

k k

s f t y

s f t h y h s

s f t h y h s s

s f t h y h s s s

s f t h y h s s s s

s f t h y h s s s s

 11
420

s

You will note that each linear combination of the previously calculated slopes is weighted average of those slopes,

meaning that the coefficients sum to one. Given these six slopes, we now calculate two approximations of the next

point:

25 1408 2197 1
1 0 2 3 4216 2565 4104 5

16 6656 28561 9 2
1 0 2 3 4 5135 12825 56430 50 55

k k

k k

y y h s s s s

z y h s s s s s

As before, we estimate the error of the less-accurate estimator by calculating and we want to ensure that

1 1 abs2 k ky z h . The less accurate approximation is O(h5), so the error is approximately ch5. Thus,

5

1 12 k kch y z under the assumption that 1 12 k ky z is either a reasonable or overestimation of the error.

Now, we want to find an h so that

5

absc ah ah ,

however, we see that
5 5 5 5 5 5

1 12 k kc ah ca h ch a y z a . Thus, substituting this into the above equation,

we have

5

1 1 abs2 k ky z a ah ,

or, solving for a, we determine that the correct scaling factor is

abs
4

1 12 k k

h
a

y z

.

Thus, the ideal step size to achieve the required error is

abs
4

1 12 k k

h
ah h

y z

.

58

The coefficients in calculating the slopes and the two estimators ensured that error of yk+1 is minimized, and thus in

this case we must use yk+1 even though zk+1 has a higher-order error.

59

Implementation of the adaptive Runge-Kutta-Fehlberg method
Here is a C++ implementation of the adaptive Runge-Kutta-Fehlberg method.

std::tuple< std::vector<double>, std::vector<double>, std::vector<double> >
 adaptive_fehlberg(double f(double, double),
 double t0, double y0, double tf,
 double h, double h_min, double eps_abs) {
 std::size_t const DIM{6};
 double step[DIM - 1]{1.0/4.0, 3.0/8.0, 12.0/13.0, 1.0, 1.0/2.0};

 double tableau[DIM - 1][DIM - 1]{
 { 1.0},
 { 1.0/4.0, 3.0/4.0},
 {161.0/169.0, -600.0/169.0, 608.0/169.0},
 {439.0/216.0, -8.0, 3680.0/513.0, -845.0/4104.0},
 {-16.0/27.0, 4.0, -7088.0/2565.0, 1859.0/2052.0, -11.0/20.0}
 };

 double y_coeff[DIM]{25.0/216.0, 0.0, 1408.0/2565.0, 2197.0/4104.0, -1.0/5.0, 0.0};
 double z_coeff[DIM]{16.0/135.0, 0.0, 6656.0/12825.0, 28561.0/56430.0, -9.0/50.0, 2.0/55.0};

 assert(h > 0);

 std::size_t k{0};

 std::queue<double> q_t{};
 std::queue<double> q_y{};
 std::queue<double> q_dy{};

 q_t.push(t0);
 q_y.push(y0);

 while (t0 < tf) {
 double s[DIM]{f(t0, q_y.back())};
 q_dy.push(s[0]);
 double t1, y1, z1, a;
 bool using_h_min;

 do {
 using_h_min = (h <= h_min);

 if (using_h_min) {
 h = h_min;
 }

 t1 = t0 + h;

 if (t1 > tf) {
 t1 = tf;
 h = tf - t0;
 }

 for (std::size_t i{0}; i < DIM - 1; ++i) {
 double slope{0.0};

 for (std::size_t j{0}; j <= i; ++j) {
 slope += tableau[i][j]*s[j];
 }

 s[i + 1] = f(t0 + h*step[i], q_y.back() + h*step[i]*slope);
 }

 double slope_y{0.0};
 double slope_z{0.0};

60

 for (std::size_t i{0}; i < DIM; ++i) {
 slope_y += y_coeff[i]*s[i];
 slope_z += z_coeff[i]*s[i];
 }

 y1 = q_y.back() + h*slope_y;
 z1 = q_y.back() + h*slope_z;
 a = 0.9*std::pow(eps_abs*h/(2.0*std::abs(z1 - y1)), 0.25);

 if (a >= 2.0) {
 h = 2.0*h;
 } else if (a < 0.5) {
 h = 0.5*h;
 } else {
 h = a*h;
 }
 } while ((a < 0.9) && !using_h_min);

 q_t.push(t1);
 // We cannot use the higher-order approximation, as the higher order
 // approximation may be worse due to the magnitude of the coefficients
 // - Use Dormand-Prince if you want to use
 // local extrapolation using z1 instead of y1
 q_y.push(y1);

 t0 = t1;
 }

 q_dy.push(f(t0, q_y.back()));

 assert((q_t.size() == q_y.size()) && (q_t.size() == q_dy.size()));

 std::size_t n{q_t.size()};

 std::vector<double> t(n);
 std::vector<double> y(n);
 std::vector<double> dy(n);

 // Remove the approximations from the queue and place them into the vector
 for (std::size_t k{0}; k < n; ++k) {
 t[k] = q_t.front();
 y[k] = q_y.front();
 dy[k] = q_dy.front();
 q_t.pop();
 q_y.pop();
 q_dy.pop();
 }

 return std::make_tuple(t, y, dy);
}

61

Examples of the Runge-Kutta-Fehlberg method
Solving the same problem we did previously using the adaptive Euler-Heun methods, we now look at the Runge-

Kutta-Fehlberg technique for estimating the solution to the initial-value problem with a maximum error of 10–5.

k tk yk

0 0 1.2

1 0.1 1.138985744767423

2 0.2736395192719883 1.070171640922223

3 0.5053336491504283 1.037524176584444

4 0.7228127565721129 1.058711631263671

5 0.9602290555275999 1.136668927595979

6 1.235119765873569 1.307789803793384

7 1.737754136156426 1.960835819016158

8 1.97235401364141 2.526888512670361

9 2 2.610742963367295

Compared to the correct solution y(2.0) = 2.610686134642448, the error is 0.00005683, which is in the same

ballpark as the maximal allowed error; however, it is still greater by a factor of five. Plotting the approximate points

versus the exact solution, we have a reasonable fit as is shown here:

62

Now, we know that the error drops by O(h4) and so we will divide the required error by 16. Thus, it should require

approximately twice as many points:

k tk yk

 0 0 1.2

 1 0.1 1.138985744767423

 2 0.1921103310200981 1.097150992823859

 3 0.3082170093714797 1.061332359840794

 4 0.426410719079129 1.041868948634119

 5 0.5426357255049833 1.037751773235398

 6 0.6615262018211252 1.047929668852698

 7 0.7857451834504847 1.073699133650115

 8 0.919015775598463 1.118864175892402

 9 1.069686657714534 1.19335833288605

10 1.239885737602207 1.311653362644173

11 1.369173481331456 1.430351038803992

12 1.496174181903581 1.576513441826428

13 1.611930056625299 1.740776585800352

14 1.721672898665665 1.929923549464155

15 1.831478642603781 2.159082627210289

16 1.954403153544082 2.474612855837278

17 2 2.610686344678339

The error of approximating y(2.0) = 2.610686134642448, after 17 steps, is 0.0000002100, which is significantly

better than the previous approximation and below our required error of 0.000000625. Because the lower-order

approximation is more precise, if the step size is not sufficiently small to sufficiently reduce the error of the higher-

order approximation, our approximation of the error of the lower-order approximation will be seriously flawed.

Thus, instead, we will look at the next algorithm: the Dormand-Prince algorithm where the coefficients are chosen to

ensure the higher-order approximation has the lowest coefficients.

63

Next, we now look at an adaptive technique for estimating the solution to the initial-value problem with a maximum

error of 0.25, but this time we will continue to use Heun’s method to approximate yk.

k tk yk

 0 0 1.2

 1 0.01 1.19309465

 2 0.0694294770206883 1.155839743047291

 3 0.1310069940291906 1.123535963443275

 4 0.1989408015299992 1.094649098899352

 5 0.2736858500275396 1.070301731956509

 6 0.3558997676019153 1.05171856028585

 7 0.4459747660330011 1.04040346305198

 8 0.5438000551793166 1.038073667340005

 9 0.6484257577345817 1.046469810012483

10 0.757778449354733 1.066979559813892

11 0.8686732243346846 1.100132312575068

12 0.9773418953102755 1.145214645177801

13 1.080356625382221 1.200327595317542

14 1.175429096725381 1.262931610756725

15 1.252923479753652 1.323188243732917

16 1.330755000870755 1.392995468582204

17 1.394015942531341 1.457317608655455

18 1.457519925297492 1.529463485478861

19 1.515248100620187 1.602301988658898

20 1.567631241175899 1.674970893700697

21 1.615407128302798 1.747213044389893

22 1.659219250018435 1.818901500512818

23 1.699604849147442 1.889971516970396

24 1.737010480529295 1.960395061836511

25 1.771808135137865 2.030166327622896

26 1.804309134776486 2.09929287772241

27 1.834775539000568 2.167790152337993

28 1.863429324445504 2.235678032233944

29 1.890459713771624 2.302978679898203

30 1.916029018468141 2.369715183081677

31 1.940277306369811 2.435910707704172

32 1.963326145352486 2.501587976973898

33 1.985281621506243 2.566768960767788

34 2 2.611956892741668

Compared to the correct solution y(2.0) = 2.610686134642448, the error is 0.001271, which approximately half the

previous error when we required an error of 0.5 while still using Heun’s method.

64

Let’s now look at a more demonstrative example. The differential equation

2
100 210

0 1.2

td
y t t e

y

y
dt

describes a decaying exponential where a forcing function with unit impulse affects the system at approximately

time t = 2. An approximation to this using the adaptive Euler-Heun technique where we use Heun’s approximation

for yk is:

k tk yk

 0 0 1.2

 1 0.01 1.188

 2 0.1975000000001595 0.9652499999998105

 3 0.3868939393940987 0.7824374999998466

 4 0.6199941724943774 0.6000511363634831

 5 0.9075570768797683 0.4274986888110457

 6 1.282525119375567 0.2672003422981639

 7 1.375630045889661 0.2423233506472151

 8 1.544393696206725 0.2014558427151085

 9 1.657563922131868 0.1804369061874284

10 1.690359470036848 0.1794516723021727

11 1.729099717872922 0.1824441794448262

12 1.760141737412585 0.1907623223300844

13 1.786408228476261 0.2033370360692868

14 1.809708467988044 0.2196092758817238

15 1.833228214176173 0.2412773669474623

16 1.854840163838437 0.2664798007798025

17 1.875695954669577 0.2956631406054607

18 1.896824904877933 0.3299212630805546

19 1.919408773055457 0.3712923787380395

20 1.945470583961783 0.4241160660616655

21 1.980400687350985 0.5007784635455076

22 2.025237606953853 0.6035988747248763

23 2.04709159839882 0.6510829136580895

24 2.069564912104507 0.6964279168462464

25 2.089134996127231 0.7317142052884810

26 2.108968184982086 .7630716220221758

27 2.126981624957125 0.7870894432135407

28 2.144203041795319 0.8059982139043934

29 2.161300084545617 0.8208956055497342

30 2.178767674128301 0.8322690360325411

31 2.197088932385955 0.8402680963595561

32 2.216843828978687 0.844770799995231

33 2.23884808632352 0.8453413452841601

34 2.264417393850828 0.8410533703544706

35 2.296006559720823 0.8300027705026978

36 2.339180586605646 0.807791963700681

37 2.411474947594179 0.7608860930803515

38 2.640154441259184 0.5962485283721206

39 3.055765119212582 0.3484829371432204

40 3.43334076657958 0.216904266555858

41 4 0.0939934611436971

65

Plotting a solution, we see that when the concavity of the solution begins to change rapidly, the step size begins to

quickly adjust, and yet when the concavity is closer to zero, the step size subsequently increases in size.

Please note, the acceptable error in this example was abs = 1, so the approximation is not required to be very precise;

however, we will now look at other examples of adaptive techniques that result in significantly more precise

approximations with significantly fewer steps.

66

67

Adaptive Dormand-Prince method
Dormand and Prince came up with a better approximation in 1980. Like the Fehlberg, it found one O(h5) and the

other O(h6); however, the coefficients were chosen to ensure that the O(h6) approximation had minimal error. In this

case, while we use the 6th-order approximation to determine the error of the 5th-order approximation, once we have

the appropriate step size, it is more appropriate to use the 6th-order approximation (unlike Felhberg).

68

Implementation of the adaptive Dormand-Prince method
Here is a C++ implementation of the adaptive Euler-Heun method.

#include <vector>
#include <tuple>
#include <cassert>

// Approximate a solution to y'(t) = f(t, y(t))
std::tuple< std::vector<double>, std::vector<double>, std::vector<double> >
 adaptive_dormand_prince(double f(double, double),
 double t0, double y0, double tf,
 double h, double using_h_min, double eps_abs) {
 std::size_t const DIM{7};
 double step[DIM - 1]{1.0/5.0, 3.0/10.0, 4.0/5.0, 8.0/9.0, 1.0, 1.0};

 double tableau[DIM - 1][DIM - 1]{
 { 1.0},
 { 1.0/4.0, 3.0/4},
 { 11.0/9.0, -14.0/3.0, 40.0/9.0},
 {4843.0/1458.0, -3170.0/243.0, 8056.0/729.0, -53.0/162.0},
 {9017.0/3168.0, -355.0/33.0, 46732.0/5247.0, 49.0/176.0, -5103.0/18656.0},
 { 35.0/384.0, 0.0, 500.0/1113.0, 125.0/192.0, -2187.0/6784.0, 11.0/84.0}
 };

 double y_coeff[DIM]{
 5179.0/57600.0, 0.0, 7571.0/16695.0, 393.0/640.0, -92097.0/339200.0, 187.0/2100.0, 1.0/40.0
 };

 double z_coeff[DIM]{
 35.0/384.0, 0.0, 500.0/1113.0, 125.0/192.0, -2187.0/6784.0, 11.0/84.0, 0.0
 };

 assert(h > 0);

 std::size_t k{0};

 std::queue<double> q_t{};
 std::queue<double> q_y{};
 std::queue<double> q_dy{};

 q_t.push(t0);
 q_y.push(y0);

 while (t0 < tf) {
 double s[DIM]{f(t0, q_y.back())};
 q_dy.push(s[0]);
 double t1, z1, a;
 bool using_h_min;

 do {
 using_h_min = (h <= h_min);

 if (using_h_min) {
 h = h_min;
 }

 t1 = t0 + h;

 if (t1 > tf) {
 t1 = tf;
 h = tf - t0;
 }

69

 for (std::size_t i{0}; i < DIM - 1; ++i) {
 double slope{0.0};

 for (std::size_t j{0}; j <= i; ++j) {
 slope += tableau[i][j]*s[j];
 }

 s[i + 1] = f(t0 + h*step[i], q_y.back() + h*step[i]*slope);
 }

 double slope_y{0.0};
 double slope_z{0.0};

 for (std::size_t i{0}; i < DIM; ++i) {
 slope_y += y_coeff[i]*s[i];
 slope_z += z_coeff[i]*s[i];
 }

 double y1{q_y.back() + h*slope_y};
 z1 = q_y.back() + h*slope_z;
 a = 0.9*std::pow(eps_abs*h/(2.0*std::abs(z1 - y1)), 0.25);

 if (a >= 2.0) {
 h = 2.0*h;
 } else if (a <= 0.5) {
 h = 0.5*h;
 } else {
 h = a*h;
 }
 } while ((a < 0.9) && !using_h_min);

 q_t.push(t1);
 q_y.push(z1);

 t0 = t1;
 }

 q_dy.push(f(t0, q_y.back()));

 assert((q_t.size() == q_y.size()) && (q_t.size() == q_dy.size()));

 std::size_t n{q_t.size()};

 std::vector<double> t(n);
 std::vector<double> y(n);
 std::vector<double> dy(n);

 for (std::size_t k{0}; k < n; ++k) {
 t[k] = q_t.front();
 y[k] = q_y.front();
 dy[k] = q_dy.front();
 q_t.pop();
 q_y.pop();
 q_dy.pop();
 }

 return std::make_tuple(t, y, dy);
}

70

Backward Euler’s (implicit) method
How can we approximate a solution? We have an initial value, let us say y(t0) = y0. Let us now consider the Tayler

series at the point t0 + h:

 1 2 2

0 0 0

1

2
y t y t h y t h h y h .

In this case, we have

 1 2 2

0 0 0

1

2
y t h y t y t h h y h ,

but now, substituting what we know from the initial-value problem, we have

 2 2

0 0 0 0

1
,

2
y t h y f t h y t h h y h .

Thus, we want to find a point y1 such that

 1 0 0 1,y y f t h y h .

This is no longer an explicit formula, for we must now solve for y1. Notice that we have something rather beautiful

here: this is of the form x = g(x) where we are solving for x, in which case, this says we can use the fixed-point

theorem and simply iterate:

.

For example, let us return to the IVP:

d
1

d

0 0.1

y t y t y t
t

y

Thus, if h = 0.5, we have the problem:

 1 10.1 0.5, 0.5y f y

which means we are searching for a root of

 1 1 10.1 1 0.5y y y .

This is a quadratic, but if we use y0 as an initial condition for fixed-point iteration, this quickly converges to the root

0.1708203932499369, and thus this becomes our approximation of y(0.5).

Next, approximating y(1) requires us to solve

 2 20.1708203932499369 1.0, 0.5 0y f y

or

71

 2 2 20.170820393249 1 0.5 09369y y y

Again, using fixed-point iteration with y1 as an initial value, we have that y2 = 0.2691818942876086.

72

Implementation of the backward Euler’s method
Here is a C++ implementation of the backward Euler’s method. The difference between this implementation and the

implementation of Euler’s method is highlighted in red.

std::tuple< std::vector<double>, std::vector<double>, std::vector<double> >
 backward_euler(double f(double, double),
 double t0, double y0, double tf,
 std::size_t n, double eps_abs, unsigned int max_iterations) {
 assert(n > 0);

 double h{(tf - t0)/n};

 std::vector<double> t(n + 1);
 std::vector<double> y(n + 1);
 std::vector<double> dy(n + 1);

 y[0] = y0;

 for (std::size_t k{0}; k < n; ++k) {
 t[k] = t0 + k*h;
 dy[k] = f(t[k], y[k]);

 unsigned int iterations{0};

 // The initial approximation for fixed-point iteration
 double y_curr{y[k]};
 double y_prev{};

 do {
 if (iterations > max_iterations) {
 throw std::runtime_error(
 "The backward Euler's method did not find a solution");
 }

 // The iteration process
 y_prev = y_curr;
 y_curr = y[k] + h*f(t[k] + h, y_curr);
 ++iterations;
 } while (std::abs(y_prev - y_curr) > eps_abs);

 y[k + 1] = y_curr;
 }

 t[n] = tf;
 dy[n] = f(tf, y[n]);

 return std::make_tuple(t, y, dy);
}

73

Example of the backward Euler’s method
Suppose we want to approximate the solution to the initial-value problem

 1
1 0.5

(0) 1.2

y t t y t

y

where we want to approximate y(2) with h = 1.0, 0.5 and 0.25. Here,

 , 1 0.5f t y t y .

First, we note that this does have a solution:

 0.5 20.50.05 5 2 e erf 0.5 2 erf 0.5 2 1 24 e
t t

y t t

This can be implemented as the C++ function

double y(double t) {
 double const SQRT_PI{std::sqrt(std::acos(-1.0))};
 double const ROOT_2_5{std::sqrt(2.0)*0.5};

 return 0.05*(10.0*ROOT_2_5*SQRT_PI*std::exp(0.5)*(
 std::erf(ROOT_2_5) + std::erf(ROOT_2_5*(t - 1))
) + 24.0)*exp(0.5*t*(t - 2.0));
}

This solution evaluated at this point is y(2.0) = 2.610686134642448.

Applying the backward Euler’s method with h = 1, we have must solve

1 0 1 1

1 1

1

1.2

,

1 1,

1.2 1 1 0.1 5

y y h f t y

y f y

y

The solution for this is y1 = 1.7. Next,

2 1 2 2

2 2

2

1.7

,

1 2,

1.7 2 1 0.1 5

y y h f t y

y f y

y

Now, this has no solution, so in essence, our value of h is too large.

74

Thus, let us use h = 0.5, so we find:

1 0 1 1

1 1

1

,

0.5 01.2

1.2 0.5 1 00 .5

.5,

.5

y

y

y h f t y

y f y

which has the exact solution y1 = 1.16. Next, finding y2:

2 1 2 2

2 2

2

,

0.5 1,

0.

1.16

1.16 1 1 0.55

y y h f t y

y f y

y

which has the solution y2 = 1.41. Next, we find y3:

3 2 3 3

3 3

3

,

0.5 11.41

1.41 1.5 1 00 .5

.5,

.5

y

y

y h f t y

y f y

which has the solution
3 2.213y . Finally, we find y4:

4 3 4 4

4 4

4

,

2.213 0.5 2,

2.213 0.5 2 1 0.5

y y h f t y

y f y

y

which has the solution 4 4.926y .

75

We will now use abs = 10–15 in our use of fixed-point iteration. Because we anticipate the number of function calls,

this technique will no doubt require significantly more function calls than any previous method.

t h = 0.5 h = 0.25 h = 0.125 h = 0.0625

0.0 1.2 1.2 1.2 1.2

0.0625 1.16309963099631

0.125 1.138028169014085 1.132420390870575

0.875 1.107433531832221

0.25 1.11578947368421 1.097625754527163 1.087697702048688

0.3125 1.072848733050428

0.3750 1.076058670865774 1.062591261883119

0.4375 1.056691936007843

0.5 1.16 1.102923976608187 1.071584631403082 1.05497399855306

0.5625 1.057313093648606

0.625 1.083304722534287 1.063634167839859

0.6875 1.073909375352506

0.75 1.155693154454764 1.111083367305975 1.088156923424005

0.8125 1.106440820063882

0.875 1.155528238578191 1.128871511381216

0.9375 1.155607419897242

1.0 1.41 1.280693154454764 1.218028238578191 1.186857419897242

1.0625 1.222884311739977

1.125 1.300854083634988 1.264009385060764

1.875 1.310618191998243

1.25 1.499406031418415 1.407333247623213 1.363167687109327

1.3125 1.422194931872460

1.3750 1.542120128653863 1.488327610237399

1.4375 1.562296659521182

1.5 2.213333333333333 1.85646403590676 1.711594803897454 1.644951390473478

1.5625 1.737277554498827

1.625 1.924441821176899 1.840418918502845

1.6875 1.955703033211136

1.75 2.438724967269859 2.192487526815889 2.084672034844470

1.8125 2.229119509959606

1.875 2.531915819582752 2.391134688221732

1.9375 2.573155519438852

2.0 4.926666666666666 3.418299956359811 2.965046650951717 2.778032554068109

Recall that the exact solution is y(2.0) = 2.610686134642448, so the error when h = 0.125 is 0.3544, while the error

when h = 0.0625 is 0.1673, which is approximately half the previous error.

76

n h
Approximation

of y(2.0)

Absolute

error

 1 2.0 undefined n/a

 2 1.0 undefined n/a

 4 0. 5 4.926666666666666 2.316

 8 0. 25 3.418299956359811 0.8076

 16 0.125 2.965046650951717 0.3544

 32 0.0625 2.778032554068109 0.1673

 64 0.03125 2.692145811868931 0.08146

 128 0.015625 2.650889848727405 0.04020

 256 0.0078125 2.630659683510977 0.01997

 512 0.00390625 2.620641224077971 0.009955

1024 0.001953125 2.615655806460025 0.004970

You will see that each time you double the number of steps, the error drops by approximately one half.

77

A linear-algebra vector class in C++
The std::vector that is included in the Standard Template Library the class equivalence of a C++ array;

however, that does not make it equivalent to the vectors in linear algebra. We require a vector class that describes

the finite-dimensional vectors seen in linear algebra: objects that include scalar multiplication and vector addition.

template <std::size_t N>
class vec {
 public:
 vec();
 vec(vec const &v);
 vec(std::initializer_list<double> init);

 vec operator =(vec const &v);
 vec operator =(double s);

 vec &operator *=(double s);
 vec operator *(double s) const;
 vec &operator /=(double s);
 vec operator /(double s) const;
 vec &operator +=(vec const &v);
 vec operator +(vec const &v) const;
 vec operator +() const;
 vec &operator -=(vec const &v);
 vec operator -(vec const &v) const;
 vec operator -() const;

 double operator *(vec const &v) const;

 double &operator [](std::size_t k);
 double operator [](std::size_t k) const;

 template <std::size_t M>
 friend vec<M> operator *(double s, vec<M> const &v);

 template <std::size_t M>
 friend double norm(vec<M> const &v);

 private:
 double entries[N];
};

78

The std::vector class is resizable; however, this is nonsensical for linear algebra, and thus rather than dealing

with dynamic memory allocation, the size of the vector will be fixed and thus we may use a template parameter N

describing the dimension.

// Default constructor: creates the zero vector
template <std::size_t N>
vec<N>::vec() {
 for (std::size_t k{0}; k < N; ++k) {
 entries[k] = 0.0;
 }
}

// Copy constructor: makes a copy of the vector 'v'
template <std::size_t N>
vec<N>::vec(vec<N> const &v) {
 for (std::size_t k{0}; k < N; ++k) {
 entries[k] = v.entries[k];
 }
}

// Construct a vector with an initializer list
template <std::size_t N>
vec<N>::vec(std::initializer_list<double> init) {
 std::size_t k{0};

 for (std::initializer_list<double>::iterator itr{init.begin()};
 itr != init.end(); ++itr) {
 entries[k] = *itr;
 ++k;
 }

 assert(k <= N);

 for (; k < N; ++k) {
 entries[k] = 0.0;
 }
}

79

// Assignment operator: assign all the entries of this vector the entries of 'v'
template <std::size_t N>
vec<N> vec<N>::operator =(vec<N> const &v) {
 for (std::size_t k{0}; k < N; ++k) {
 entries[k] = v.entries[k];
 }

 return *this;
}

// Assignment operator: assign all the entries of this vector the scalar 's'
template <std::size_t N>
vec<N> vec<N>::operator =(double s) {
 for (std::size_t k{0}; k < N; ++k) {
 entries[k] = s;
 }

 return *this;
}

// Auto-scalar-multiplication: multiply each entry in this vector by the scalar 's'
template <std::size_t N>
vec<N> &vec<N>::operator *=(double s) {
 for (std::size_t k{0}; k < N; ++k) {
 entries[k] *= s;
 }

 return *this;
}

// Return a vector that is this vector multiplied by the scalar 's'
template <std::size_t N>
vec<N> vec<N>::operator *(double s) const {
 vec<N> ret;

 for (std::size_t k{0}; k < N; ++k) {
 ret.entries[k] = entries[k]*s;
 }

 return ret;
}

80

// Auto-scalar-division: divide each entry in this vector by the scalar 's'
template <std::size_t N>
vec<N> &vec<N>::operator /=(double s) {
 for (std::size_t k{0}; k < N; ++k) {
 entries[k] /= s;
 }

 return *this;
}

// Return a vector that is this vector divided by the scalar 's'
template <std::size_t N>
vec<N> vec<N>::operator /(double s) const {
 vec<N> ret;

 for (std::size_t k{0}; k < N; ++k) {
 ret.entries[k] = entries[k]/s;
 }

 return ret;
}

// Auto-vector-addition: add to this vector the vector 'v'
template <std::size_t N>
vec<N> &vec<N>::operator +=(vec const &v) {
 for (std::size_t k{0}; k < N; ++k) {
 entries[k] += v.entries[k];
 }

 return *this;
}

// Return a vector that is the sum of this vector added to the vector 'v'
template <std::size_t N>
vec<N> vec<N>::operator +(vec const &v) const {
 vec<N> ret;

 for (std::size_t k{0}; k < N; ++k) {
 ret.entries[k] = entries[k] + v.entries[k];
 }

 return ret;
}

// Return a copy of this vector
template <std::size_t N>
vec<N> vec<N>::operator +(vec const &v) const {
 vec<N> ret{ v };
 return ret;
}

81

// Auto-vector-subtraction: subtract from this vector the vector 'v'
template <std::size_t N>
vec<N> &vec<N>::operator -=(vec const &v) {
 for (std::size_t k{0}; k < N; ++k) {
 entries[k] -= v.entries[k];
 }

 return *this;
}

// Return a vector that is the vector 'v' subtracted from this vector
template <std::size_t N>
vec<N> vec<N>::operator -(vec const &v) const {
 vec<N> ret;

 for (std::size_t k{0}; k < N; ++k) {
 ret.entries[k] = entries[k] - v.entries[k];
 }

 return ret;
}

// Return this vector negated
template <std::size_t N>
vec<N> vec<N>::operator -() const {
 vec<N> ret;

 for (std::size_t k{0}; k < N; ++k) {
 ret.entries[k] = -entries[k];
 }

 return ret;
}

// Return the inner product of this vector and the vector 'v'
template <std::size_t N>
double vec<N>::operator *(vec const &v) const {
 double result{0.0};

 for (std::size_t k{0}; k < N; ++k) {
 result += entries[k]*entries[k];
 }

 return result;
}

82

// Access the 'k'th entry of this vector by reference
template <std::size_t N>
double &vec<N>::operator [](std::size_t k) {
 return entries[k];
}

// Access the 'k'th entry of this vector by value
template <std::size_t N>
double vec<N>::operator [](std::size_t k) const {
 return entries[k];
}

// A friend function that is called if the user calculates s*v
// for a vector 'v' and a scalar 's'
template <std::size_t M>
vec<M> operator *(double s, vec<M> const &v) {
 return v * s;
}

// A friend function that calculates the norm of the vector 'v'
template <std::size_t M>
double norm(vec<M> const &v) {
 double result{0.0};

 for (std::size_t k{0}; k < M; ++k) {
 result += v.entries[k]*v.entries[k];
 }

 return std::sqrt(result);
}

83

Solving a system of initial-value problems
A system of initial-value problems is a collection of n initial-value problems of the form

1

1 1 1 2

1

2 2 1 2

1

1 2

1 0 0,1

2 0 0,2

0 0,

, , , ,

, , , ,

, , , ,

n

n

n n n

n n

y t f t y t y t y t

y t f t y t y t y t

y t f t y t y t y t

y t y

y t y

y t y

Now, if we define the vector

1

2

n

y t

y t
t

y t

y ,

then

1

1

1

1 2

1

n

y t

y t
t

y t

y

and the vector-valued function f as

1 1 2

2 1 2

1 2

, , , ,

, , , ,
,

, , , ,

n

n

n n

f t y t y t y t

f t y t y t y t
t t

f t y t y t y t

f y

and the initial vector as

0,1

0,2

0

0,n

y

y

y

y

then we can write this system of initial-value problems as

84

1

0 0

,t t t

t

y f y

y y

Because this is vector-based, it is now possible to implement these the same functions using the same tools; for

example, for Euler’s method,

 1 ,k k k kh t y y f y

while the 4th-order Runge-Kutta method calculates four slopes, each of which is a vector:

0

1 0

2 1

3 2

1 0 1 2 3

,

,
2 2

,
2 2

,

2 2
6

k k

k k

k k

k k

k k

t

h h
t

h h
t

t h h

h

s f y

s f y s

s f y s

s f y s

y y s s s s

You will note that in each case, each of the vectors is n-dimensional, and so we are either performing scalar

arithmetic, such as
2

k

h
t ; or vector addition or scalar multiplication, such as 0 1 2 32 2

6
k

h
 y s s s s .

Consequently, we need only rewrite our functions to use our vector class vec<N>; however, with templates, it gets

even easier.

85

Let’s take a look at Euler’s method. All vectors are highlighted in blue, and the type is abstracted using templates.

template <typename vector_type>
std::tuple< std::vector<double>, std::vector<T>, std::vector<T> >
 euler(vector_type f(double, vector_type),
 double t0, vector_type y0, double tf,
 std::size_t n) {
 assert(n > 0);

 double h{(tf - t0)/n};

 std::<double> t(n + 1);

 std::vector<vector_type> y(n + 1);
 std::vector<vector_type> dy(n + 1);

 y[0] = y0;

 for (std::size_t k{0}; k < n; ++k) {
 t[k] = t0 + k*h;

 vector_type s0{f(t[k], y[k])};
 dy[k] = s0;

 y[k + 1] = y[k] + h*s0;
 }

 t[n] = tf;
 dy[n] = f(tf, y[n]);

 return std::make_tuple(t, y, dy);
}

With iterative or adaptive methods, it was previously necessary to calculate the difference between two values, e.g.,

1 1k ky z . When we have a system of initial-value problems, we must calculate the difference between two

vectors, and thus the user must provide a vector norm. Thus, we will add a final argument that is a function that

calculates the norm of either a scalar or vector, and give it the default value of std::abs; however, if the user is using

a vector class, the user can provide a norm function.

template <typename vector_type>

std::tuple< std::vector<double>, std::vector<vector_type>, std::vector<vector_type> >
 adaptive_dormand_prince(vector_type f(double, vector_type),
 double t0, vector_type y0, double tf,
 double h, double eps_abs, double norm(vector_type) = std::abs);

86

As an example, consider the fox-and-rabbit problem presented at

https://mathinsight.org/introducing_rabbit_predators

This gives the system of two differential equations that describe at a very simple level the relationship between a

population of foxes and rabbits:

0.01

0.0005

d
r t r t r t f t

dt

d
f t f t r t f t

dt

with the initial conditions

0 2000

0 100

r

f

After approximately 18.5 years, this returns to a point very close to the initial state.

87

To model this we must define the vector-valued function describing the slope:

vec<2> f(double t, vec<2> y) {
 return vec<2>{ y[0] - 0.01*y[0]*y[1],
 -0.5*y[1] + 0.0005*y[0]*y[1] };
}

auto result = adaptive_dormand_prince(f, 0, vec<2>{2000, 100}, 18.5, 0.1, 1e-3,
 reinterpret_cast<double(*)(vec<2>)>(norm<2>));

This table shows the t values and a pair representing the number of rabbits and foxes per generation. You will note

that there seems to be an 18 ½ generation cycle. This is a consequence of the simplified differential equation. This

looping behaviour is no different than the looping behavior of the second-order differential equation

 2
0y t y t .

0, (2000, 100)
0.0720791, (1997.37, 103.666)
0.144193, (1989.4, 107.449)
0.2162, (1976.01, 111.32)
0.288708, (1957.04, 115.292)
0.362428, (1932.2, 119.379)
0.43828, (1900.95, 123.604)
0.517582, (1862.45, 128.004)
0.602531, (1815.07, 132.649)
0.697761, (1755.24, 137.706)
0.8198, (1669.97, 143.832)
0.915401, (1598, 148.26)
1.01126, (1522.76, 152.297)
1.10015, (1451.39, 155.631)
1.18623, (1381.81, 158.447)
1.27184, (1313, 160.82)
1.35847, (1244.51, 162.773)
1.44735, (1176.14, 164.3)
1.53972, (1107.72, 165.378)
1.63704, (1039.09, 165.968)
1.74123, (970.008, 166.004)
1.85518, (899.986, 165.385)
1.9841, (827.942, 163.935)
2.13867, (751.483, 161.281)
2.28606, (688.199, 157.976)
2.43289, (633.806, 154.085)
2.56943, (590.287, 150.052)
2.70192, (553.937, 145.855)
2.83345, (523.004, 141.49)
2.9656, (496.574, 136.977)
3.09938, (474.073, 132.339)
3.23556, (455.116, 127.599)
3.37476, (439.436, 122.78)
3.51755, (426.859, 117.909)
3.66442, (417.284, 113.007)
3.81586, (410.676, 108.1)
3.97238, (407.068, 103.211)
4.13448, (406.561, 98.3638)
4.30275, (409.34, 93.5821)
4.47784, (415.689, 88.8883)
4.66055, (426.015, 84.3052)
4.85185, (440.897, 79.8557)
5.05292, (461.138, 75.5646)
5.26526, (487.854, 71.4607)
5.49073, (522.607, 67.5796)
5.73189, (567.638, 63.9672)

 5.99316, (626.447, 60.6798)
 6.28635, (706.14, 57.7721)
 6.54774, (790.604, 55.895)
 6.77046, (873.303, 54.8536)
 6.9685, (955.492, 54.3869)
 7.14824, (1037.21, 54.3663)
 7.32973, (1126.44, 54.7688)
 7.49605, (1213.73, 55.547)
 7.65182, (1299.68, 56.6674)
 7.80071, (1384.86, 58.129)
 7.94611, (1469.9, 59.9629)
 8.09215, (1555.9, 62.2514)
 8.2465, (1645.61, 65.2064)
 8.39878, (1730.66, 68.7161)
 8.51646, (1792.31, 71.8667)
 8.62021, (1842.46, 74.9808)
 8.72445, (1887.8, 78.4411)
 8.81906, (1923.61, 81.8766)
 8.90662, (1951.48, 85.3089)
 8.9892, (1972.51, 88.7672)
 9.06812, (1987.35, 92.2687)
 9.14435, (1996.41, 95.8251)
 9.21861, (1999.94, 99.4451)
 9.29155, (1998.07, 103.136)
 9.36373, (1990.86, 106.907)
 9.43571, (1978.24, 110.765)
 9.50811, (1960.08, 114.722)
 9.58161, (1936.1, 118.791)
 9.65709, (1905.8, 122.995)
 9.7358, (1868.4, 127.367)
 9.81975, (1822.42, 131.971)
 9.91303, (1764.75, 136.951)
10.0286, (1685.17, 142.817)
10.1265, (1612.29, 147.428)
10.2249, (1535.56, 151.65)
10.3147, (1463.64, 155.092)
10.4011, (1393.85, 157.99)
10.4866, (1324.94, 160.437)
10.573, (1256.42, 162.463)
10.6614, (1188.04, 164.065)
10.7531, (1119.64, 165.225)
10.8494, (1051.06, 165.903)
10.9522, (982.078, 166.041)
11.0642, (912.272, 165.546)
11.19, (840.707, 164.259)
11.339, (765.222, 161.855)

11.49, (698.628, 158.602)
11.6404, (641.535, 154.709)
11.7781, (596.579, 150.696)
11.911, (559.254, 146.525)
12.0425, (527.544, 142.186)
12.1745, (500.45, 137.695)
12.308, (477.362, 133.074)
12.4437, (457.869, 128.348)
12.5824, (441.689, 123.541)
12.7246, (428.633, 118.676)
12.8708, (418.591, 113.777)
13.0215, (411.517, 108.869)
13.1772, (407.432, 103.976)
13.3384, (406.429, 99.1209)
13.5056, (408.677, 94.3274)
13.6796, (414.441, 89.6183)
13.8611, (424.11, 85.0163)
14.051, (438.23, 80.5443)
14.2504, (457.565, 76.2266)
14.4609, (483.175, 72.0911)
14.6841, (516.54, 68.1723)
14.9226, (559.77, 64.5142)
15.1803, (616.093, 61.1719)
15.4668, (691.679, 58.202)
15.7454, (779.53, 56.0879)
15.9718, (862.177, 54.9568)
16.1727, (944.449, 54.4216)
16.3546, (1026.21, 54.3462)
16.5384, (1115.75, 54.699)
16.7063, (1203.26, 55.4344)
16.8632, (1289.34, 56.514)
17.0127, (1374.58, 57.9334)
17.1583, (1459.6, 59.7193)
17.304, (1545.39, 61.9456)
17.4566, (1634.36, 64.7987)
17.6181, (1724.99, 68.4554)
17.7371, (1787.71, 71.6088)
17.8418, (1838.68, 74.7238)
17.947, (1884.85, 78.1913)
18.0422, (1921.31, 81.629)
18.1302, (1949.71, 85.0604)
18.2131, (1971.2, 88.5161)
18.2923, (1986.48, 92.0141)
18.3687, (1995.94, 95.5662)
18.443, (1999.87, 99.1814)
18.5, (1999.17, 102.046)

88

Solving a higher-order IVP and systems of higher-order IVPs
A higher order initial-value problem involves a differential equation with a higher derivative together with initial

conditions. For example,

2

2
5 6 sin

d d
y t y t y t t

dtdt

or

2 1
5 6 siny t y t y t t

with both an initial place and velocity:

0 0

1 1

0 0

y t y

y t y

In this case, if we define

0

1
1

y tw t
t

w t y t

w .

Given a vector of functions of t, we can define the derivative of that vector by taking the derivative of each of the

entries:

1 1

01

1 2

1

w t y t
t

w t y t

w .

Note, however, that
 1

0 1w t w t , while

2 1
5 6 siny t y t y t t so

 1

1 1 05 6 sinw t w t w t t , and therefore we have that

1

0 1

1

1 1 0sin 5 6

w t w t

w t t w t w t

Therefore, we can define the vector-valued function

1

1 0

,
sin 5 6

w t
t t

t w t w t

f w

so that our initial value problem may now be written as

 1
,t t tw f w

The initial values are

0

0 0 1

0

y
t

y

w w .

89

Thus, our second-order initial-value problem is reduced to a system of two first-order initial-value problems:

1

0 0

,t t t

t

w f w

w w

Thus, we can implement these using the functions we’ve already written:

vec<2> f(double t, vec<2> w) {
 return vec<2>{ w[1],
 std::sin(t) - 5*w[1] - 6*w[0] };
}

auto result = adaptive_dormand_prince(f, 0, vec<2>{2000, 100}, 18.5, 0.1, 1e-3,
 reinterpret_cast<double(*)(vec<2>)>(norm<2>));

In general, if we have a higher-order initial-value problem, we can almost always write it as

 1 2 1

, , , , ,
n n

y t f t y t y t y t y t

 .

We could re-interpret the subsequent arguments as a vector:

1

2

1

, ,
n

n

y t

y t

y t f t f t ty t

y t

w .

We thus have that

0
1

1

2

2

1
1

n
n

y t
w t

y t w t

t w ty t

w t
y t

w .

Thus, the derivative of this vector is

11

0
1

21

1 2

31
1 32

1 1
1

2

1

1

,

,

n
n

n

n
n

y tw t w t

y tw t w t

w tw t y t
t t t

w tw t y t
f t t

w t y t

w f w

w

90

Such a higher-order initial-value problem would have n initial conditions:

0

1

0

2

0

0

2

0

1

0

n

n

y

y

y

y

y

w

For example, if we have an 8th-order initial-value problem and the 8th-derivative is described by the function

double f(double t, double y0, double y1, double y2, double y3, double y4, double y5, double y6, double y7);

where yk is the value of the kth derivative, we can implement it as follows:

vec<8> f_vec(double t, vec<8> w) {
 return vec<2>{ w[1],
 w[2],
 w[3],
 w[4],
 w[5],
 w[6],
 w[7],
 f(t, w[0], w[1], w[2], w[3], w[4], w[5], w[6], w[7]) };
}

auto result = adaptive_dormand_prince(f_vec, 0,
 vec<8>{0.2, 0.5, -0.3, 0.7, 0.4, 1.2, 0.8, 0.3},
 18.5, 0.1, 1e-3,
 reinterpret_cast<double(*)(vec<8>)>(norm<8>));

91

Problems
A. Given the initial-value problem

1
0.5

1 1.2

y t y t

y

1. Apply Euler’s method to approximate y(5) using n = 4 (answer: 1.2, 0.6, 0.3, 0.15, 0.075).

2. Apply Huen’s method to approximate y(5) using n = 2 (answer: 1.2, 0.6, 0.3).

3. Apply the 4th-order Runge Kutta method to approximate y(5) using n = 1 (answer: 1.2, 0.4).

4. You have applied Euler’s method twice to approximate y(5) using n = 8 and n = 16. You get the following two

sequences of approximations:

y = 1.2, 0.9, 0.675, 0.5062, 0.3797, 0.2848, 0.2136, 0.1602, 0.1201
z = 1.2, 1.05, 0.9188, 0.8039, 0.7034, 0.6155, 0.5386, 0.4712, 0.4123, 0.3608, 0.3157, 0.2762, 0.2417, 0.2115, 0.1851, 0.1619, 0.1417

where y0 = 1.2, y1 = 0.9, …, y8 = 0.1201 and z0 = 1.2, z1 = 1.05, …, z16 = 0.1417. What is a reasonable

approximation of error of z16 = 0.1417 (answer: 0.0216), and use extrapolation to find a better approximation of

y(5) using both z16 and y8 (answer: 0.1633). Similarly, what is the best approximation of y(3) (answer: 0.4449)?

5. You have applied the 4th-order Runge Kutta method twice to approximate y(5) using n = 2 and n = 4. You get

the following two sequences of approximations:

y = 1.2, 0.45, 0.1688
z = 1.2, 0.7281, 0.4418, 0.2681, 0.1627

What is a reasonable approximation of error of z4 = 0.1627 (answer: –0.00040666···), and use extrapolation to

find a better approximation of y(5) using both y2 and z4 (answer: 0.16229333···) Similarly, what is the best

approximation of y(3) (answer: 0.44125333···)?

6. Perform one step of the adaptive Euler-Heun method to approximate y(3) using h = 2. Assume the goal is to

approximate y(5). What is the value of a at the next step if abs = 0.1? Must you repeat the calculation, or can

you continue (answer: a = 0.041666···, so repeat)? What is the step size at the next step (answer: 0.075)?

7. Perform one step of the backward-Euler method to approximate y(5) with h = 4 until the difference is 0.01.

Hint: does it converge using fixed-point interation? If not, what else can you do?

92

B. Given the initial-value problem

1
0.1 0.1

0 0.7

y t y t t

y

1. Apply Euler’s method to approximate y(4) using n = 4 (answer: 0.7, 0.63, 0.667, 0.8003, 1.02027)

2. Apply Huen’s method to approximate y(4) using n = 2 (answer: 0.7, 0.774, 1.19468)

3. Apply the 4th-order Runge Kutta method to approximate y(4) using n = 1 (answer: 1.17328)

4. You have applied Euler’s method twice to approximate y(4) using n = 8 and n = 16. You get the following two

sequences of approximations:

y = 0.7, 0.6650, 0.6568, 0.6739, 0.7152, 0.7795, 0.8655, 0.9722, 1.0986
z = 0.7, 0.6825, 0.6717, 0.6674, 0.6695, 0.6777, 0.6920, 0.7122, 0.7382, 0.7697, 0.8067, 0.8491, 0.8966, 0.9492, 1.0067, 1.0690, 1.1360

What is a reasonable approximation of error of z16 = 1.1360 (answer: 0.0374), and use extrapolation to find a

better approximation of y(4) using both y8 and z16 (answer: 1.1734). Similarly, what is the best approximation of

y(2) (answer: 0.7612)?

5. You have applied the 4th-order Runge Kutta method twice to approximate y(4) using n = 2 and n = 4. You get

the following two sequences of approximations:

y = 0.7, 0.7604, 1.1725
z = 0.7, 0.6818, 0.7604, 0.9268, 1.1724

What is a reasonable approximation of error of z4 = 1.1724 (answer: 0.000006667), and use extrapolation to find

a better approximation of y(4) using both y2 and z4 (answer: 1.172393333). Similarly, what is the best

approximation of y(2) (answer: 0.7604)?

6. Perform one step of the adaptive Euler-Heun method to approximate y(2) using h = 2. What is the value of s at

the next step. Assume your goal is to estimate y(10). What is the value of a at the next step if abs = 0.1? Must

you repeat the calculation, or can you continue (answer: a = 0.0258···, so repeat)? What is the step size at the

next step (answer: repeat with h = 0.04651···)?

7. Perform one step of the backward-Euler method to approximate y(4) with h = 4 until the difference is 0.01

(answer: 1.64440192).

93

C. Given the initial-value problem

1

1

0 0.5

0 0.5

x t x t y t

y t x t y t

x

y

1. Apply Euler’s method to approximate x(4) and y(4) using n = 4 (answer:
0.5 0.5 1.5 3.5 8.5

, , , ,
0.5 0.5 0.5 1.5 3.5

).

2. Apply Huen’s method to approximate x(4) and y(4) using n = 2 (answer:
0.5 2.5 16.5

, ,
0.5 0.5 3.5

).

3. Apply the 4th-order Runge Kutta method to approximate x(4) and y(4) using n = 1 (answer:
29.83

4.5

).

4. If

x t
t

y t

z and you have applied Euler’s method twice to approximate x(4) and y(4) using n = 8 and

n = 16. You get the following two sequences of approximations:

0.5 0.5 0.75 1.25 2.125 3.625 6.188 10.56 18.03
, , , , , , , ,

0.5 0 0.25 0.5 0.875 1.5 2.562 4.375 7.469

z

0.5 0.5 0.5625 0.6875 0.8828 1.164 1.556 2.093 2.824
, , , , , , , , ,

0.5 0.25 0.0625 0.09375 0.2422 0.4023 0.5928 0.8335 1.148

3.818 5.164 6
, ,

1.567 2.130

z

.987 9.456 12.80 17.32 23.45 31.74
, , , , ,

2.888 3.913 5.299 7.174 9.711 13.14

What is a reasonable approximation of the error of 16z (answer:
13.71

5.671

), and use extrapolation to find a

better approximation of x(4) and y(4) using both z8 and 16z (answer:
45.45

18.81

). Similarly, what is the best

approximation of x(2) and y(2) (answer:
3.523

1.421

)?

5. You have applied the 4th-order Runge Kutta method twice to approximate x(4) and y(4) using n = 2 and n = 4.

You get the following two sequences of approximations:

0.5 3.833 51.17
, ,

0.5 0.8333 20.39

z

0.5 1.083 4.125 16.64 67.41
, , , ,

0.5 0.25 1.653 6.877 27.92

z

What is a reasonable approximation of error of 4z (answer:
1.083

0.502

), and use extrapolation to find a better

approximation of x(4) and y(4) using both z2 and 4z (answer:
68.49

28.42

). Similarly, what is the best

approximation of x(2) and x(2) (answer:
4.144

1.708

)?

94

6. Perform one step of the adaptive Euler-Heun method to approximate x(2) and y(2) using h = 2 (
0.5

1.5

 and

2.5

0.5

). Assume your goal is to estimate x(20) and y(20). What is the value of a at the next step if abs = 0.1

(answer: 0.00176)? Must you repeat the calculation, or can you continue (answer: repeat)? What is the step size

at the next step (answer: 0.00318)?

95

D. Given the initial-value problem

2 1

1

1

0 1

0 0.5

x t x t x t

x

x

1. Apply Euler’s method to approximate x(4) using n = 4. What is an approximation of the derivative at t = 4?

(Answer:
1 1.5 1.5 0.5 3

, , , ,
0.5 0 1 3.5 6.25

 so x(4) ≈ –3 and x(1)(4) ≈ –6.25.)

2. Apply Huen’s method to approximate x(4) using n = 2. What is an approximation of the derivative at t = 4?

(Answer:
1 1 9

, ,
0.5 2 18

 so x(4) ≈ –9 and x(1)(4) ≈ 18.)

3. Apply the 4th-order Runge Kutta method to approximate x(4) using n = 1. What is an approximation of the

derivative at t = 4?

(Answer:
1 6.33

,
0.5 25.83

 so x(4) ≈ –6.333 and x(1)(4) ≈ 25.833.)

4. You have applied Euler’s method twice to approximate x(4) using n = 8 and n = 16. You get the following two

sequences of approximations:

1 1.25 1.375 1.3281 0.9990 0.2014 1.2447 3.0834 4.0319
, , , , , , , ,

0.5 0.25 0.0938 0.6582 1.5953 2.8922 3.6834 1.8910 0.5272

w

1 1.125 1.2188 1.2764 1.2890 1.2433 1.1202 0.8964 0.5475
, , , , , , , , ,

0.5 0.375 0.2305 0.0507 0.1831 0.4922 0.8951 1.3958 1.9586

0.0578 0.5613
,

2.4767

w

1.2520 1.9802 2.4215 2.7524 2.9455 3.0683
, , , , , ,

2.7625 2.6248 2.0533 1.3238 0.7724 0.4909 0.3794

What is a reasonable approximation of error of 16w (
0.9636

0.9066

), and use extrapolation to find a better

approximation of x(4) using both w8 and 16w (
2.1047

1.2860

 so x(4) ≈ –2.1047). Similarly, what is the best

approximation of x(2) (
0.4515

0.3633

 so x(4) ≈ –0.4515)?

5. You have applied the 4th-order Runge Kutta method twice to approximate x(4) using n = 2 and n = 4. You get

the following two sequences of approximations:

1 0 5.5309
, ,

0.5 1.6667 19.4472

w

1 1.1647 0.0271 1.8079 2.6032
, , , ,

0.5 0.3164 1.9491 1.3227 0.6198

w

What is a reasonable approximation of error of w2, and use extrapolation to find a better approximation of x(4)

using both w2 and 4w . Similarly, what is the best approximation of x(2)?

6. Perform one step of the adaptive Euler-Heun method to approximate x(2) using h = 2. What is the value of s at

the next step. Must you repeat the calculation, or can you continue? What is the step size at the next step?

96

E. Explain why we can use the extrapolation in the iterative methods to get a better solution given two less-

accurate solutions.

F. Explain how we derive the scaling factor used in the adaptive techniques.

G. Give two reasons why the adaptive techniques discussed are better than the iterative techniques.

97

Acknowledgments
Sidharth Baveja

Xiao Tong Mu

Hamza Baig

	7.1 First-order initial-value problems
	Interpreting ivps
	Euler’s method
	Integration, in disguise
	Implementation of Euler’s method
	Example of Euler’s method

	Estimating intermediate points
	Example of estimating intermediate points
	Implementation of estimating intermediate points

	Heun’s method
	Proof that Heun’s method is O(h3)
	Implementation of Heun’s method
	Example of Heun’s method

	4th-order Runge-Kutta method
	Implementation of Runge-Kutta method
	Example of 4th-order Runge-Kutta method

	Iterative methods
	Iterative Euler’s method: estimating the error of Euler’s method
	Implementation of iterative Euler’s method
	Example of the iterative Euler’s method

	Iterative 4th-order Runge-Kutta method: estimating the error
	Implementation of iterative 4th-order Runge-Kutta method
	Example of the iterative 4th-order Runge-Kutta method

	Adaptive methods
	Adaptive Euler-Heun method
	Implementation issues
	Implementation of the adaptive Euler-Heun method
	Examples of the adaptive Euler-Heun method

	Adaptive Runge-Kutta-Fehlberg method
	Implementation of the adaptive Runge-Kutta-Fehlberg method
	Examples of the Runge-Kutta-Fehlberg method

	Adaptive Dormand-Prince method
	Implementation of the adaptive Dormand-Prince method

	Backward Euler’s (implicit) method
	Implementation of the backward Euler’s method
	Example of the backward Euler’s method

	A linear-algebra vector class in C++
	Solving a system of initial-value problems
	Solving a higher-order ivp and systems of higher-order ivps

	Problems
	Acknowledgments

